WINDCNC

LS Series 脉冲式全数字交流伺服驱动器 便捷用户手册

南京达风数控技术有限公司

NanJing WindCNC Technology Co.,Ltd 版本: V2.00

版本管理记录

序号	版本号	修订日期	修订概述	修订人
1	V2.00	2021-06-17	新建文档	陈小波

—— 目录 ——

第一	章 安装与尺寸	4 -
	1.1 伺服驱动器安装环境要求	4 -
	1.2 伺服驱动器安装	4 -
	1. 2. 1 方向性	4 -
	1. 2. 2 安装标准	5 -
	1.3 外形尺寸图(基座型)	5 -
	1.3.1 LS Series-30PS 外形尺寸	5 -
	1.3.2 LS Series-30PD/ LS Series-50PS /LS Series-75PS 外形尺寸	5 -
第二	章 功能概述	6 -
	2. 1. 1 伺服型号说明	6 -
	2. 1. 3 伺服基本功能	7 -
第三	章 配 线	8 -
	3.1 主电路的配线	8 -
	3. 1. 1 主电路端子的名称与功能	8 -
	3. 1. 2 主电路及输入输出信号配线	9 -
	3. 1. 3 输入与输出信号名称及其功能(CN1)(适用 LS Series-30PS/LS Series-50PS/LS Series-75P	'S 单
	通道驱动器)	9 -
	3.1.4编码器用连接器(CN2)信号名称(适用 LS Series-30PS/LS Series-50PS/LS Series-75PS	单通
	道驱动器)	- 11 -
	3.1.5输入与输出信号名称及其功能(CN1A、CN1B) (适用 LS Series-30PD 双通道驱动器)	- 12 -
	3.1.6 编码器用连接器(CN2A CN2B)信号名称(适用 LS Series-30PD 双通道驱动器)	- 14 -
第四	章 面板操作器的使用方法	- 15 -
	4.1 基本操作	- 15 -
	4. 1. 1 面板操作器的功能	- 15 -
	4. 1. 2 清除伺服报警	- 15 -
	4. 1. 3 基本模式的选择与操作	- 15 -
	4. 1. 4 状态显示模式	- 16 -
	4.2应用操作	- 17 -
	4. 2. 1 用户参数模式操作(P□□□□)	- 17 -
	4. 2. 2 辅助功能模式(F□□□□)	- 19 -
	4. 2. 3 监视模式操作(Un□□□)	- 19 -
第五	章 运行	- 22 -
	5.1 试运行	- 22 -
	5. 1. 1伺服电机单体的试运行	- 22 -
	5. 1. 2机械与伺服电机配套试运行	- 22 -
	5. 1. 3带制动器的伺服电机的试运行	- 23 -
	5. 2通用基本功能的设定	- 23 -
	5. 2. 1 伺服 ON 设定	- 23 -
	5. 2. 2电机旋转方向的切换	- 23 -
	5. 2. 3 超程设定	- 24 -
	5. 2. 4 保持制动器的设定	- 25 -
	5.3速度控制(模拟量电压指令)运行	- 26 -
	5. 3. 1 用户参数的设定	- 26 -
	5. 3. 2输入信号的设定	- 26 -

	111111111111111111111111111111111111111
5. 3. 4 软起动	
5. 3. 5编码器信号输出	28 -
5. 4位置控制运行	28 -
5. 4. 1用户参数的设定	28 -
5. 4. 2电子齿轮的设定	29 -
5. 4. 3 位置指令	31 -
5. 5. 4 平滑	
5.5速度控制(内部速度选择)运行	34 -
5. 5. 1用户参数的设定	34 -
5. 5. 2输入信号的设定	34 -
5. 5. 3内部设定速度运行	35 -
第六章 调试与应用	37 -
6.1 快速调试注意事项	37 -
6.2常用参数调试说明	37 -
6.3模拟量速度控制调试	37 -
1、接线设定:	
2、参数设定:	38 -
6. 4 内部速度控制调试	
1. 接线设定:	
2、参数设定	
3、内部速度控制逻辑	
6.5 自适应陷波器调试	
(1) 手动设定陷波器参数的操作步骤	
(2) 自动设定陷波器参数的操作步骤	
附录 A 用户参数一览表	
附录 B 报警显示一览表	
B.1报警显示一览	
B.2报警显示与报警显示的原因与处理措施	
附录 C 脉冲式伺服驱动器电机型号代码表	
1. 米格电机设定:	
2. 华大电机型号设定:	
3. 达风 AST 5 对极电机参数设定:	59 -

第一章 安装与尺寸

1.1 伺服驱动器安装环境要求

- ■温度: 0~55℃;
- ■环境湿度:不高于90% RH(非结露);
- ■海拔不超过 1000m;
- ■振动极限 4.9m/s²;
- ■冲击极限 19.6m/s²;
- ■其他安装注意事项:
- 安装于控制柜中

需要综合考虑控制柜的大小、伺服驱动器的放置方式以及冷却方式以保证伺服驱动器的环境温度低于 55℃, 具体操作细节可参看 1.2.2 相关章节的描述;

• 安装于热源附近

需要控制热源的辐射及由于对流产生的温度上升以保证伺服驱动器的环境温度低于55℃;

• 安装于振动源附近

需要安装振动隔离装置以避免振动传递至伺服驱动器;

• 安装暴露于腐蚀气体中

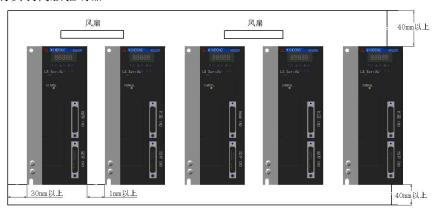
采取必要措施阻止暴露于腐蚀气体中。腐蚀气体可能不会立即影响伺服驱动器,但明显会导致电子元器件及接触器相关器件的故障;

• 其他场合

不要将驱动器放置于诸如高温、高湿、滴露、溅油、灰尘、铁屑或辐射场合;

注: 当关闭电源存放伺服驱动器时,请将驱动器放置于如下环境中: -20~85℃, 不高于 90% RH(非结露)

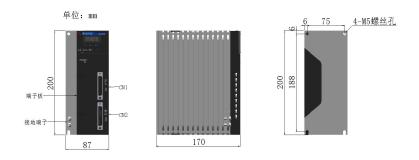
1.2 伺服驱动器安装


1.2.1 方向性

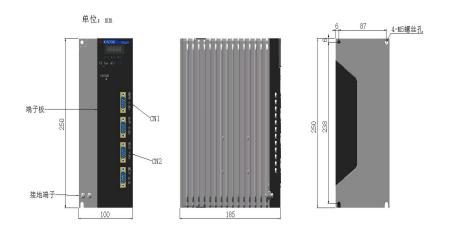
伺服驱动器可以有多种安装方式,但无论如何,都必须必须将伺服驱动器安装于垂直方向上。

1. 2. 2 安装标准

- 伺服安装方向
- 将伺服垂直安装于墙面并使操作面板朝外;
- 勘执
- 参考示意图并为风扇及空气对流的散热预留足够的空间;
- 在安装面板上肩并肩安装伺服驱动器



• 电柜内安装


电柜内安装条件可参考 1.1 章节相关的描述。

1.3 外形尺寸图(基座型)

1.3.1 LS Series-30PS 外形尺寸

1.3.2 LS Series-30PD/LS Series-50PS /LS Series-75PS 外形尺寸

第二章 功能概述

2.1.1 伺服型号说明

型号定义规则 LS Series- XX Y Z

LS Series	XX		Υ		Z	
	符号	规格	符号	规格	符号	规格
)	30	模块电流 30A	P	脉冲型	S	单通道
达风伺服 LS 系列	50	模块电流 50A	M	MII 型	D	双通道
	75	模块电流 75A				

2.1.3 伺服基本功能

控制模式	WITE THE PROPERTY OF THE PROPE	位置控制、JOG 运行、速度接点等
1丁は12大大/		
编码器反馈		普通增量编码器: 2500 线增量标准式、2500 线增量省线式 串行编码器: 2 ¹⁷ bit 增量式编码器、2 ¹⁷ /2 ¹⁶ bit 绝对值编码器
	使用环境温度 / 保管温度	中行編時益: Z ** DIC 增重以編時益、Z **/Z ** DIC 纪刈值編時益 使用环/境温度: 0~+50℃,保管温度: -20~+85℃
使用条件	环境湿度 / 保管湿度	90%RH以下(不得冻结、结露)
区用水口	耐振动/耐冲击强度	4.9m/s ² / 19.6m/s ²
 构造		基座安装型
15AL	速度控制范围	1:10000(速度控制范围的下限是额定负载时平稳运行无爬行)
	速度响应	1KHz
性能	速度波动率(负载变化)	0~100%负载时: ±0.01%以下(额定转速时)
17-00	速度波动率(电压变化)	额定电压±10%: 0%(额定转速时)
	速度波动率(温度变化)	25±25℃: ±0.1%以下(额定转速时)
	指令电压	DC±10V
模拟速度	输入阻抗	约 20KΩ
指令输入	电路时间参数	47µs
table to a to the control of the con	指令电压	DC±10V
模拟转矩	输入阻抗	约 20KΩ
指令输入	电路时间参数	47µs
	点数	8点
顺控输入 信号	功能(可分配)	伺服 ON (/S-ON)、P 动作 (/P-CON)、禁止正转侧驱动 (P-OT)、禁止反转侧驱动 (N-OT)、报警复位 (/ALM-RST)、正转侧转矩限制 (/P-CL)、反转侧转矩限制 (/N-CL)、位置偏差清零 (/CLR)、内部设定速度切换等 可进行上述信号的分配以及正 / 负逻辑的变更
	点数	6点
顺控输出 信号	功能(可分配)	伺服报警(ALM)、定位完成(/COIN)、速度一致检出(/V-CMP)、伺服电机旋转检出(/TGON)、伺服准备就绪(/S-RDY)、转矩限制检出(/CLT)、制动器(/BK)、编码器零点输出(PGC)可进行上述信号的分配以及正/负逻辑的变更
编码器分频服		A 相、B 相、C 相:线性驱动输出;分频脉冲数:可任意设定
	通讯协议	MODBUS
RS-485	1: N 通讯	最大可为 N = 127 站
通讯	轴地址设定	通过参数设定
显示功能	1	CHARGE 指示灯,7 段数码管 5 位
再生处理		内置再生电阻器或外置再生电阻器(选购件)
超程(OT)	防止功能	P-OT、N-OT 输入动作时的动态制动器(DB)停止、减速停止或自由运行停止
保护功能		过电流、过电压、欠电压、过载、超速、再生故障、编码器反馈错误等。
监视功能		转速、当前位置、指令脉冲积累、位置偏差、电机电流、运行状态、输入输出信号等
辅助功能		增益调整、报警记录、JOG 运行、原点搜索、惯量检测等
智能功能		内置增益自动调谐功能
适用负载惯量		小于电机惯量的 5 倍
	前馈补偿	0~100%(设定单位 1%)
	输入脉冲种类	符号+脉冲序列、CW+CCW 脉冲序列、90 ° 相位差二相脉冲(A 相+B 相)
位置控制	输入脉冲形式	支持线性驱动、集电极开路
	最大输入脉冲频率	线性驱动 符号+脉冲序列、CW+CCW 脉冲序列: 500K pps 90 ° 相位差二相脉冲(A 相+B 相): 500K pps 集电极开路 符号+脉冲序列、CW+CCW 脉冲序列: 200Kpps
		90 ° 相位差二相脉冲(A 相+B 相): 200Kpps

第三章 配线

3.1 主电路的配线

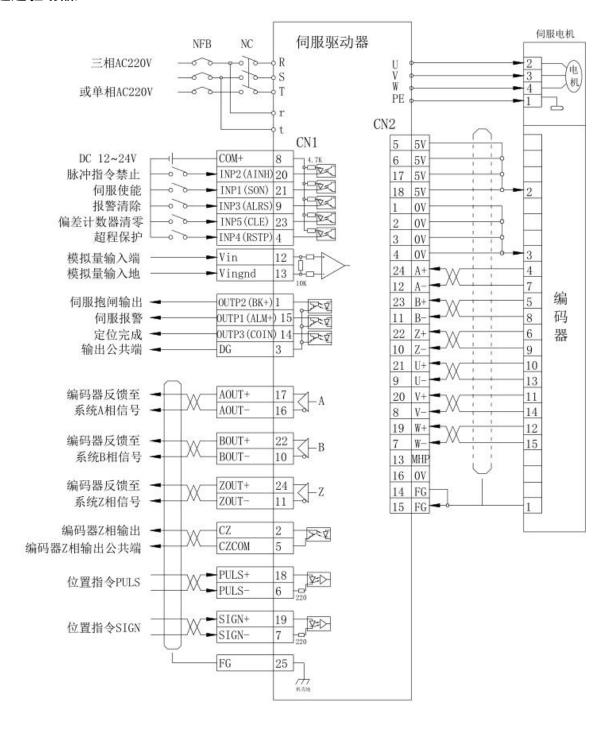
1注意

●进行接线或检修作业时,必须先断开电源,因驱动器内部有大容量电解电容,因此内部电路仍有高压。为了防止触电,在5分钟之内请勿触摸电源端子。

放电完毕后,CHARGE指示灯会熄灭。请在确认CHARGE指示灯熄灭后再进行连接和检查。

- ●驱动器输出端子U、V、W和电机U、V、W必须正确对应。注意不能使用调换三相端子的方法使电机反转,否则会出现电机不能启动、运转异常等不可意料情况。
- ●请勿将电源线和信号线从同一套管内穿过,也不要将其绑扎在一起。配线时,电源线和信号线30cm以上。
- ●信号用电缆以及编码器电缆请使用双股绞合线以及多芯双股绞合屏蔽线。
- ●输入输出信号用电缆的最大接线长度为3m,编码器电缆的最大接线长度为20m。

3.1.1 主电路端子的名称与功能


端子符号 名称

功能

R, S, T	主回路电源输入端子	三相200~230VAC+10% -15% (50/60Hz)
r, t	控制回路电源输入端子	单相200~230VAC+10% -15% (50/60Hz)
U, V, W	电机连接端子	伺服电机连接。(适用于单通道模式)
UA, VA, WA	A轴电机连接端子	与A轴伺服电机连接。(适用于双通道模式)
UB, VB, WB	B轴电机连接端子	与B轴伺服电机连接。(适用于双通道模式)
PE	接地端子	与电源接地端子以及电机接地端子连接,进行接地处理。

3.1.2 主电路及输入输出信号配线

■位置控制模式、速度控制模式(适用 LS Series-30PS/LS Series-50PS/LS Series-75PS 单通道驱动器)

3.1.3 输入与输出信号名称及其功能(CN1)(适用LS Series-30PS/LS Series-50PS/LS Series-75PS 单通道驱动器)

CN1 端子为 DB25 针插座, 插头应当配 DB25 孔;

		CN1
OUTP2 (BK+)	1	
OUTP3 (COIN)	14	
CZ	2	
OUTP1 (ALM+)	15	
COM-	3	
AOUT-	16	
INP4 (RSTP)	4	
AOUT+	17	
CZCOM	5	
APULS+	18	
APULS-	6	
ASIGN+	19	
ASIGN-	7	
INP2 (AINH)	20	
COM+	8	<u> </u>
INP1 (SON)	21	
INP3 (ALRS)	9	
BOUT+	22	
BOUT-	10	
INP5 (CLE)	23	
ZOUT-	11	
ZOUT+	24	
CMV+	12	
FG	25	
10	13	
GND		DB25

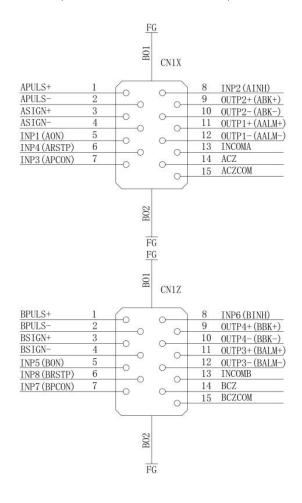
引脚	标识号	信号名称	功能描述
8	COM+	输入端子电源	输入端子的电源正极,用来驱动输入端子的光电耦合器,
6	COM	正极	DC12~24V,电流>=100mA
		第二路输入 IO	出厂默认为 NCL 信号
20	INP2(NCL)	(默认为 NCL 信	
		号输入)	
			伺服使能输入端子
		 第一路输入 IO	SON ON: 允许驱动器工作
21	INID1(CON)		SON OFF: 驱动器关闭,电机处于自由状态
21	INP1(SON)	(默认为伺服使	注1:当从 SON OFF 切换到 SON ON 前,电机必须是静止的
		能信号输入)	注 2: 切换到 SON ON 后,至少等待 5ms 再输入命令
			注 3: 如果用内部使能,则 SON 不检测
		第三路输入 IO	报警清除输入端子
9	INP3(ALRS)	(默认为报警清	ALRS ON: 清除系统报警
		除信号输入)	ALRS OFF:保持系统报警
		第五路输入 IO	出厂默认为 PCL 信号
23	INP5(PCL)	(默认为 PCL 信	
		号输入)	
12	CMV(Vin)	模拟量输入	外部模拟速度指令输入,输入阻抗 10K 欧姆,输入范围
12	CIVI V (VIII)		0V~10V
13	GND(Vingnd)	模拟量输入地	模拟输入信号地线
		第二路输出 IO	BK 抱闸信号输出
1	OUT2(BK+)	(默认为 BK 信	
		号输出)	
15	OUT1(ALM)	第一路输出 IO	伺服报警输出

		(伺服报警输出)	
14	OUT3(COIN)	第三路输出 IO (定位完成输出)	定位完成输出 COIN ON: 当位置偏差计数器数值在设定范围时,定位完成 输出 ON
4	INP4(RSTP)	第四路输入 IO (超程保护)	外接超程保护信号,信号有效时产生报警
3	COM-(DG)	输出端子公共 地	控制信号输出端子(除 CZ 外)的地线公共端
17	AOUT+	编码器 A+输出	编码器 A、B、Z 信号差分驱动输出(26LS31 输出)
16	AOUT-	编码器 A-输出	
22	BOUT+	编码器 B+输出	
10	BOUT-	编码器 B-输出	
24	ZOUT+	编码器 Z+输出	
11	ZOUT-	编码器 Z-输出	
2	CZ	编码器 Z 相集 电极开路输出	1. 编码器 Z 相信号由集电极开路输出,编码器 Z 相信号出现时,输出 ON,否则输出 OFF 2. 通常 Z 相信号脉冲很窄,上位机请用高速光耦接收
5	CZCOM	编码器 Z 相开路输出的公共端	编码器Z相集电极输出的公共端
18	APULS+	指令脉冲输入+	指令脉冲和方向输入
6	APULS-	指令脉冲输入-	模式 1: 指令脉冲+方向方式(单脉冲模式)
19	ASIGN+	指令方向输入+	模式 2: CCW/CW 指令脉冲方式(双脉冲模式)
7	ASIGN-	指令方向输入-	
25	FG	屏蔽地线	屏蔽地线端子

⁽注) 1、空置的端子,请勿使用。

3. 1. 4 编码器用连接器 (CN2) 信号名称 (适用 LS Series-30PS/LS Series-50PS/LS Series-75PS 单通道驱动器)

CN2 端子为 DB25 孔插座, 插头应当配 DB25 针;

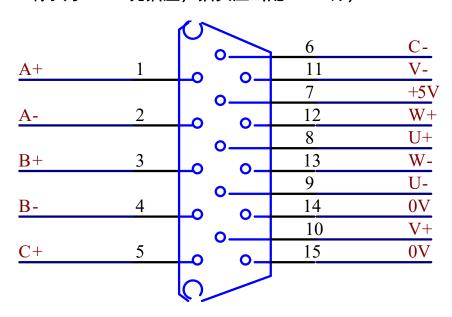

MHP	13	_\S_		
		Γ \circ \downarrow	25	NC
A-	12	-	24	A+
B-	11	°-	24	Α⊤
		\top \sim	23	B+
Z-	10		22	71
U-	9	0-	22	Z+
		$+$ \cdot \rfloor	21	U+
V-	8	┶		
***	7	0-	20	V+
W-	7	 •	19	W+
+5V	6	° -		
		Γ \circ \bot	18	+5V
+5V	5	-	17	+5V
0V	4	°-	1/	13 V
		┯。」	16	0V
0V	3	_	1.5	FC
0V	2	0-	15	FG
- 0 +		$+$ \sim	14	FG
0V	1	ا ما		
		0		

^{2、}请将输入输出信号用电缆的屏蔽线连接至连接器壳体。

南京达风数控脉冲式全数字交流伺服便捷用户手册

引脚	标识号	信号名称	功能描述
5 6 17 18	+5V	5V 电源	· 伺服电机光电编码器用+5V 电源; 电缆较长时, 应当使用多根芯
1 2 3 4 16	0V	电源公共端	线并联,减少线路压降
24	A+	编码器 A+输入	与伺服电机光电编码器 A+相连接
12	A-	编码器 A-输入	与伺服电机光电编码器 A-相连接
23	B+	编码器 B+输入	与伺服电机光电编码器 B+相连接
11	B-	编码器 B-输入	与伺服电机光电编码器 B-相连接
22	Z+	编码器 Z+输入	与伺服电机光电编码器 Z+相连接
10	Z-	编码器 Z-输入	与伺服电机光电编码器 Z-相连接
21	U+	编码器 U+输入	与伺服电机光电编码器 U+相连接
9	U-	编码器 U-输入	与伺服电机光电编码器 U-相连接
20	V+	编码器 V+输入	与伺服电机光电编码器 V+相连接
8	V-	编码器 V-输入	与伺服电机光电编码器 V-相连接
19	W+	编码器 W+输入	与伺服电机光电编码器 W+相连接
7	W-	编码器 W-输入	与伺服电机光电编码器 W-相连接

3. 1. 5 输入与输出信号名称及其功能(CN1A、CN1B) (适用 LS Series-30PD 双通道驱动器) CN1A 、CN1B 端子为 DB15 针插座, 插头应当配 DB15 孔;



(CN1A, CN1B 端子定义)

引脚	标识号	信号名称	功能描述
13	INCOMA\INCO MB(COM+)	输入端子电源 正极	输入端子的电源正极,用来驱动输入端子的光电耦合器, DC12~24V, 电流>=100mA
8	INP2/INP6(INH)	第二路输入 IO/ 第六路输入 IO (默认为指令脉 冲禁止)	位置指令脉冲禁止输入 INH ON:脉冲输入禁止 INH OFF:脉冲输入有效
5	INP1/INP5(SON)	第一路输入 IO/ 第五路输入 IO (默认为伺服使 能)	伺服使能输入端子 SON ON: 允许驱动器工作 SON OFF: 驱动器关闭,电机处于自由状态注 1: 当从 SON OFF 切换到 SON ON 前,电机必须是静止的 注 2: 切换到 SON ON 后,至少等待 5ms 再输入命令注 3: 如果用内部使能,则 SON 不检测
11 12	OUT0/OUT2 (ALM+ ALM-)	第路输入 IO/第 六路输入 IO 伺服报警输出	伺服报警输出 一般将 ALM+信号接数控系统报警输入口; 将 ALM-信号接数控系统地(0V)
6	DG	输出端子公共 地	控制信号输出端子(除 CZ 外)的地线公共端
14	CZ	编码器 Z 相集 电极开路输出	1.编码器 Z 相信号由集电极开路输出,编码器 Z 相信号出现时,输出 ON,否则输出 OFF 2.通常 Z 相信号脉冲很窄,上位机请用高速光耦接收
15	CZCOM	编码器 Z 相开 路输出的公共 端	编码器 Z 相集电极输出的公共端
1	PULS+	指令脉冲输入	指令脉冲和方向输入 模式 1: 指令脉冲+方向方式(单脉冲模式)
2	PULS-	指令脉冲输入-	模式 2: CCW/CW 指令脉冲方式(双脉冲模式)
3	SIGN+	指令方向输入	
4	SIGN-	指令方向输入-	
7	P-CON	控制模式切换 输入	位置控制和速度模式控制切换输入
9 10	BK+ BK-	电机报闸输出	电机报闸输出; 触点输出,一般 BK+接继电器控制端; BK-接 0V;

⁽注) 1、空置的端子,请勿使用。 2、请将输入输出信号用电缆的屏蔽线连接至连接器壳体。

3. 1. 6 编码器用连接器 (CN2A CN2B) 信号名称 (适用 LS Series-30PD 双通道驱动器) CN2A、CN2B 端子为 DB15 孔插座, 插头应当配 DB15 针;

(CN2A, CN2B 端子定义)

引脚	标识号	信号名称	功能描述	
7	+5V	5V 电源	- 伺服电机光电编码器用+5V 电源; 电缆较长时, 应当使用多根芯	
14 15	0V	电源公共端	— 何旅电机几电编码品用+3V电源;电现较长的,应当使用多 线并联,减少线路压降	
1	A+	编码器 A+输入	与伺服电机光电编码器 A+相连接	
2	A-	编码器 A-输入	与伺服电机光电编码器 A-相连接	
3	B+	编码器 B+输入	与伺服电机光电编码器 B+相连接	
4	B-	编码器 B-输入	与伺服电机光电编码器 B-相连接	
5	Z+	编码器 Z+输入	与伺服电机光电编码器 Z+相连接	
6	Z-	编码器 Z-输入	与伺服电机光电编码器 Z-相连接	
8	U+	编码器 U+输入	与伺服电机光电编码器 U+相连接	
9	U-	编码器 U-输入	与伺服电机光电编码器 U-相连接	
10	V+	编码器 V+输入	与伺服电机光电编码器 V+相连接	
11	V-	编码器 V-输入	与伺服电机光电编码器 V-相连接	
12	W+	编码器 W+输入	与伺服电机光电编码器 W+相连接	
13	W-	编码器 W-输入	与伺服电机光电编码器 W-相连接	

第四章 面板操作器的使用方法

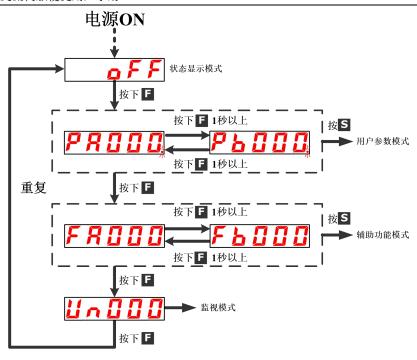
4.1 基本操作

4.1.1 面板操作器的功能

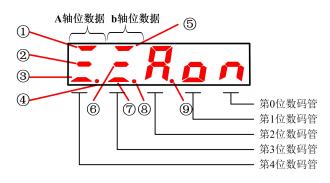
用面板操作器可进行 A 轴与 B 轴显示和操作的切换,各种参数的设定,JOG 运行指令的执行以及状态显示等。下面汇总了各键的名称与功能。

键 图	名 称	功能
F	功能键	切换基本模式:状态显示、辅助功能、参数设定、监视 长按用于切换 A 轴与 B 轴显示以及操作
	UP 键	按下 UP 键可增加设定值 在辅助功能模式 JOG 运行时作为正转启动键作用
V	DOWN 键	按下 DOWN 键可减少设定值 在辅助功能模式 JOG 运行时作为反转启动键作用
4	移位键	按下该键可将所选的位(该位的小数点闪烁)向左移动一位
S	设置键	按此键可显示各参数的设定及设定值,及进入参数设定状态和 清除报警

4.1.2 清除伺服报警


在状态显示模式下,按 SET 键,可清除报警;也可用清除报警输入信号/ALMRST清除报警。

注: 当发生报警时,请先消除报警原因,然后再清除报警。


4.1.3 基本模式的选择与操作

通过对面板操作器的基本模式进行切换,可进行运行状态的显示、参数的设定、运行指令等的操作。

基本模式中包含状态显示模式、参数设定模式、监视模式及辅助功能模式。按 F 键后,各模式按下图显示的顺序依次切换。

4. 1. 4 状态显示模式

■位数据的显示内容

<u> </u>	· 加亚尔内台					
项目		速度、转矩控制模式		位置控制模式		
ツロ コ	位数据	显示内容	位数据	显示内容		
1)	正在运行	伺服 ON 状态时点亮 (电机处于通电状态)	正在运行	伺服 ON 状态 (电机处于通电状态)		
2	同速 (/V-CMP)	电机的速度与指令速度之差低于规定 值时点亮 规定值: PA503 (出厂值时设定为10rpm)	定位完成 (/COIN)	实际电机位置与位置指令的偏移量小于规定值时点亮规定值: PA500(出厂值时设定为10脉冲)		
3	旋转检测 (/TGON)	电机的速度超过规定值时点亮 规定值: PA502 (出厂值时设定为 20rpm)	正在旋转检测 (/TGON)	电机的速度超过规定值时点亮 规定值: PA502 (出厂值时设定为 20rpm)		
4	正反转禁止	伺服处于限位时: 点亮表示正转禁止状态 熄灭表示反转禁止状态 闪烁表示正/反转禁止状态	正反转禁止	伺服处于限位时: 点亮表示正转禁止状态 熄灭表示反转禁止状态 闪烁表示正/反转禁止状态		
9	主电源准备就绪	主电路电源正常时点亮主电路电源断开时熄灭	主电源 准备就绪	主电路电源正常时点亮主电路电源断开时熄灭		

■省略符号的显示内容

省略符号	显示内容
oFF	伺服均处于 OFF 状态 (电机处于非通电状态)
Ron	伺服处于 ON 状态 (电机处于通电状态)
Rot	伺服正转或反转禁止状态 (需根据位显中的正反转禁止位判断)
RI (报警状态 显示报警号码

4.2 应用操作

4. 2. 1 用户参数模式操作(P□□□□)

可通过设定参数来选择或调整功能。用户参数有"参数设定"和"功能选择"两种类型。用户参数一览表在附表中。在附录的参数一览表中可确认修改的范围。

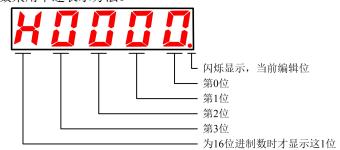
参数设定是将要调整的参数数据在一定范围内进行变更的功能;功能选择是对已分配给面板操作器各位数的功能 进行选择。

■"参数设定"的变更步骤实例:

下面所示为将用户参数 PA100 (速度环增益) 从"40"变更为"100"时的操作步骤。

操作步骤	操作说明	操作键	操作后的显示
1	请按下F功能键,选择参数设定模式	F	PABBB
2	请按下 2 次移位键,选择当前显示的第 2 位,显示PA0.00,当前显示的第 2 位的小数点闪烁	•	<i>PR 0.00</i>
4	请按下 UP 键,变更数据,显示 PA1.00		PR [00
5	请按下设置键,显示 PA100 当前数据	S	
6	请按下2次移位键,选择当前显示的第2位,显示000.40, 当前显示的第2位的小数点闪烁	T	
7	请按下 UP 键,变更数据,显示 001.40		
8	请按下4次移位键,选择当前显示的第1位,显示0014.0, 当前显示的第2位的小数点闪烁	▼	
9	请按下 DOWN 键,变更数据,显示 001.00	V	
10	请按下设置键,返回PA1.00显示,这样速度环增益PA100的内容从"40"变更为"100"	S	PR (00

■"功能选择"的变更步骤实例:


下面所示为将 A 轴功能选择基本开关 PA000 的控制方式选择(PA000.1)从从速度控制变更为位置控制的操作步骤。

操作步骤	操作说明	操作键	操作后的显示
1	请按下F功能键(持续1秒以上),显示PA0.00	F	PRODE
2	按下设置键,显示 PA000 当前数据,当前显示的第 0 位的小数点闪烁	S	XIIII
3	请按下1次移位键,选择当前显示的第1位,显示 H000.0,当前显示的第1位的小数点闪烁	▼	XIII

4	请按下 UP 键,变更数据,显示 H001.0		XIII U
5	请按下设置键,返回 PA0.00 显示,这样 A 轴控制方式就变更为位置控制	S	PRU

■本手册中的用户参数表示

功能选择的用户参数用 16 进制数表示,设定值的各位数均有各自的含义。本手册对功能选择用户参数采用下述表示方法。

PA000.0 或者 A.Hxxx□ 。。。。。。 PA000.1 或者 A.Hxx□x 。。。。。。 PA000.2 或者 A.Hx□xx 。。。。。 PA000.3 或者 A.H□xxx 。。。。。 表示 A 轴用户参数 "PA000"的设定值"0 位数"所表示的值。表示 A 轴用户参数 "PA000"的设定值"1 位数"所表示的值。表示 A 轴用户参数 "PA000"的设定值"2 位数"所表示的值。表示 A 轴用户参数 "PA000"的设定值"3 位数"所表示的值。

4. 2. 2 辅助功能模式 (F□□□□)

■辅助功能执行模式一览

辅助功能号	功能
F□000	显示伺服的软件版本
F□001	位置示教(仅在位置模式有效)
F□002	微动(JOG)模式运行
F□003	识别负载惯量百分比(相对电机本体惯量)
F□004	用户密码验证
F□005	查看电机相关参数
F□006	手动调整速度指令偏移量
F□007	手动调整转矩指令偏移量
F□008	自动调整模拟量(速度、转矩)指令偏移量
F□009	清除编码器多圈信息数据(仅在使用总线式编码器有效)
F□010	清除编码器错误(仅在使用总线式编码器有效)
F□011	对用户参数设定值进行初始化
F□012	显示历史报警数据

■显示伺服的软件版本的操作:

下面所示为显示软件版本的操作步骤。

m1//1.4 // 4 min	1.1/C(1.1/2)C(1.5.2)C(1.5.2)C(1.5.2)			
操作步骤	操作说明	操作键	操作后的显示	
1	请按下F功能键,选择辅助功能模式,当前为辅助功 能模式	F	FROOD	
2	请按下设置键,显示 A-1.00,表示处理器程序版本为 V1.00	S	R - ([] []	
3	请按下移位键,显示 P-1.00,表示 FPGA 程序版本为 V1.00	~	P - (00	
4	请按下设置键,返回 Fb000 显示。	S	FROOD	

■微动(JOG)模式运行的操作:

下面所示为显示 JOG 运行的操作步骤。

操作步骤	操作说明	操作键	操作后的显示
1	请按下 UP 键或 DOWN 键选择想要操作的辅助功能 FA002		FR002
2	请按下设置键,进入 JOG 操作	S	2 - L - R
3	请按下F功能键,进入伺服 ON 状态(电机处于通电 状态)	F	
4	请按下 UP 键或 DOWN 键,电机运转	A V	
5	请按下设置键,返回 FA002 显示	S	FR002

■用户参数设定值初始化的操作:

下面所示为显示用户参数设定值初始化的操作步骤。

m//1/1/1/2/2007	717 多数及定值仍知识计学级。		
操作步骤	操作说明	操作键	操作后的显示
1	请按下 UP 键或 DOWN 键选择想要操作的辅助功能 FA011		FAO !!
2	请按下设置键,进入参数初始化操作	S	Pinik
3	请按下设置键(持续1秒以上)直至闪烁显示"donE", 表示用户参数设定值初始化已经成功完成	S	donE
4	请按下设置键,返回 FA011 显示	S	FRO 11

4. 2. 3 监视模式操作(Un□□□)

(1) 监视模式下的显示内容

在监视模式下,可对输入到伺服驱动器的指令值、输入输出信号的状态以及伺服的内部状态进行监视。即使伺服

电机处于运行状态,也能对监视模式进行变更。

监视号	显示内容	单位
Un000	电机转速	1r/min
Un001	旋转角(电气角)	1deg
Un002	输入指令脉冲速度(仅在位置控制模式有效)	1KHz
Un003	母线电压	1V
Un004	模拟输入速度指令值	1r/min
Un005	模拟输入转矩指令百分比(相对额定转矩)	1%
Un006	内部转矩指令(相对额定转矩或电机给定电流)	1%或 0.1A
Un007	输入口信号监视	_
Un008	输出口信号监视	_
Un009	编码器信号监视(仅在增量式编码器时有效)	_
Un010	输入指令脉冲计数器(32位10进制显示,仅在位置控制模式有效)	1指令脉冲
Un011	反馈脉冲计数器(编码器脉冲 4 倍频数据,32 位 10 进制显示)	1指令脉冲
Un012	位置偏移量计数器(仅在位置控制模式有效)	1指令脉冲
Un013	累计负载率(将额定扭矩设为100%时的值)	1%
Un014	转动惯量比(负载转动惯量相对电机本题转动惯量)	1%
Un015	编码器实际角度(32 位 10 进制显示)	1指令脉冲
Un016	编码器圈数显示(仅在绝对值编码器时有效)	1 圏

(2) 顺序用输入输出信号的监视显示

顺序用输入输出信号的监视显示如下所示

(a) 输入信号状态的监视显示

显示输入/输出端子所分配信号的输入/输出状态。

输入/输出为 OFF (开路) 状态时,上侧的显示段(LED) 点亮。

输入/输出为 ON (短路) 状态时,下侧的显示段(LED) 点亮。

上: OFF (H电平) 下: ON (L电平)

请参照"7.3.2输入电路的信号分配"确认输入端子与输入信号之间的关系。

监视号	显示 LED 号码	输入端子名称	出厂时的设定		
血化与	业小 LED 亏铜		单轴	双轴	
	1	IN1 (CN1-14)	/S-ON	A 轴/S-ON	
	2	IN2 (CN1-15)	/P-CON	A 轴/P-CON	
	3	IN3 (CN1-16)	POT	A 轴 POT	
Un007	4	IN4 (CN1-17)	NOT	A 轴 NOT	
Onoo7	5	IN5 (CN1-39)	/ALM-RST	b 轴/S-ON	
	6	IN6 (CN1-40)	/CLR	b 轴/P-CON	
	7	IN7 (CN1-41)	/PCL	b 轴 POT	
	8	IN8 (CN1-42)	/NCL	b 轴 NOT	

(b) 输出信号状态的监视显示

显示分配给输出端子的输出信号的状态。

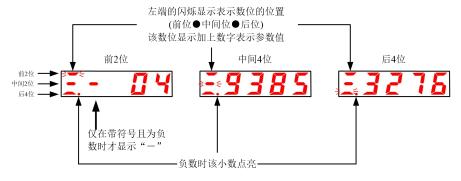
输出为OFF(开路)状态时,上侧的显示段(LED)点亮。

输出为 ON(短路) 状态时,下侧的显示段(LED) 点亮。

W.) = =		输入端子名称	出厂日	
监视号	显示 LED 号码		单轴	双轴
	1	OUT1 (CN1-7, -8)	ALM	A 轴 ALM
	2	OUT2 (CN1-9, -10)	/COIN 或/V-CMP	A 轴/COIN 或/V-CMP
Un008	3	OUT3 (CN1-11, -12)	/TGON	A 轴/TGON
Un008	4	OUT4 (CN1-32, -33)	/S-RDY	b 轴 ALM
	5	OUT5 (CN1-34, -35)	/CLT	b 轴/COIN 或/V-CMP
	6	OUT6 (CN1-36, -37)	/BK	b 轴/TGON
	1	PW (CN2□-12, -13)	□轴编码器 ₩ 相	
Un009	2	PV (CN2□-10, -11)	□轴编码器 V 相	
(仅在	3	PU (CN2□-8, -9)	□轴编码器 U 相	
增量	4	UVW 断线检测信号	□轴 UVW 断线检测	
编码	5	PC (CN2□-5, -6)	□轴编码器C相	
器有	6	PB (CN2□-3, -4)	□轴编码器 B 相	
效)	7	PA (CN2□-1, -2)	□轴编码器 A 相	
	8	ABC 断线检测信号	□轴 UVW 断线检测	

(3) 监视模式的使用方法

下面所示为显示 b 轴 Un000 数据的操作步骤。(A 轴、b 轴伺服电机分别以 1000、1500r/min 的转速旋转时)


操作步骤	操作说明	操作键	操作后的显示
1	请按下F功能键,选择A轴监视模式。未显示Un000时,按UP键或DOWN键,设定Un000。	F	
2	请按下设置键,显示 Un000 数据,当前显示第 0 位小数点处于熄灭状态,故该显示为 A 轴的 Un000	S	
3	请按下 UP 键或 DOWN 键,当前显示第 0 位小数点处于常亮状态,故该显示为 b 轴的 Un000 数据		1500
4	请按下设置键,返回监视号码显示。	S	

(4) 指令脉冲、反馈脉冲计数器、编码器实际角度的监视显示

下面所示为显示 b 轴 Un010 数据的操作步骤。

操作步骤	操作说明	操作键	操作后的显示
1	请按下F功能键,选择A轴监视模式。未显示Un010时,按UP键或DOWN键,设定Un010。	F	
2	请按下设置键显示 Un010 数据, 当前显示第 0 位小数 点处于熄灭状态,故该显示为 A 轴 Un010 的低 16 位。	S	432 IL
3	请按下 UP 键或 DOWN 键,当前显示第 0 位小数点处于常亮状态,故该显示为 b 轴 Un010 数据的低 16 位。		5587L
4	请按下移位键,当前显示第 0 位小数点处于常亮状态,故该显示为 b 轴的 Un010 数据的高 16 位。	•	150 1X
5	请按下设置键,返回监视号码显示。	S	

显示的读取方法归纳如下:

第五章 运行

5.1 试运行

请在配线结束后,进行试运行。

5.1.1 伺服电机单体的试运行

▲ 注意

• 断开伺服电机与机械之间的连接部分,仅使伺服电机单体处于固定的状态。

为了避免意想不到的事故,在本项的说明中,将伺服电机置于空载状态(联轴节与皮带等脱离的伺服电机单体的状态),进行试运行。

在本项中确认电源与电机主电路用电缆、编码器电缆是否正确配线。伺服电机在试运行状态下不能平滑旋转的很多原因就是这类配线错误。因此请再次确认。

确认配线正确之后,请按下面所示的编号顺序进行伺服电机单体的试运行。

· 微动(JOG) 模式运行(F□002)

下面所示为显示 A 轴 JOG 运行的操作步骤。

操作步骤	操作	操作键		操作后的显示	<u> </u>	
1	请按下F功能键(持续1 功能模式。	秒以上),切换到 A 轴辅	^助 F	F	$R \coprod \coprod$	
2	请按下 F 功能键,选择 A FA002 时,按 UP 键或 DC		示人	F	888	
3	请按下设置键,进入 JOG	操作。	S	R	م لـ	
4	请按下F功能键,进入伺状态)。	·电 F	K	<u> الـ</u>		
5	请按下 UP 键(逆时针方] 针方向反转),电机运转。	it I	R	<u> </u>		
6	请按下F功能键,进入伺电状态)。	·····································	R	10		
7	请按下设置键,返回 FA0	S	F	<u> R II I</u>		
P□304	微动 (JOG) 速度				位置	扭矩
	设定范围	出厂设定		电源	重起	
	0~6000 1rpm 500 不需要					需要
设定辅助功能	能"微动(JOG) 模式运行(F	n002)"的电机转速指令(直。			

请充分注意,在微动(JOG)模式运行中,禁止正转驱动(P-OT)与禁止反转驱动(N-OT)信号无效。

5.1.2 机械与伺服电机配套试运行

危险

• 请按指示进行本节所示的操作。

在伺服电机和机械连接后的状态下,如果发生操作错误,则不仅仅会造成机械的损坏,有时还可能会导致人身伤害事故。

请按照以下步骤进行试运行。

步骤	内容	确认方法与补充说明
1	请接通电源,进行有关超程与制动器等保护功能的机械构成设定。	请参照"通用基本功能的设定"。 使用带制动器的伺服电机时,请在事先采取防止机械自然落下以 及外力产生振动的应对措施的条件下确认制动器的动作。请确认 伺服电机的动作与制动器动作均为正常。

步骤	内容	确认方法与补充说明
		请参照"保持制动器的设定"。
2	请根据使用的控制模式设定所需的用户参数。	根据使用的控制模式,请参照 "速度控制(模拟量电压指令)运行" "位置控制运行" "扭矩控制运行"
3	请在切断电源的状态下,用联轴节等连接伺服电机与机械。	请参照"伺服电机安装注意事项"。
4	请在确认伺服控制器变为伺服OFF(伺服电机非通电 状态)之后,接通机械(指令控制器的)电源。请再 次确认步骤1的保护功能是否正常地动作。	请参照"通用基本功能的设定"。 如果此后的步骤在运行时发生异常,则可执行能够安全停止的紧 急停止。
5	请根据"通过上级指令进行伺服电机单体的试运行"的各项目,在机械与伺服电机已安装好的状态下进行试运行。	请确认结果与伺服电机单体的试运行相同。另外还请确认指令单位等设定与机械相符。
6	请再次确认用户参数设定与步骤2 的控制模式相符。	请确认伺服电机是否按照机械动作规格进行运行。
7	请根据需要调整伺服增益以改善伺服电机的响应性。	试运行时可能会出现与机械的"磨合"不充分的情况,因此请充分地进行试运行。
8	请将为了维护而设定的用户参数记载于"12.4 用户参数设定备忘录"中。 至此"机械与伺服电机配套试运行"已经完成。	

5.1.3 带制动器的伺服电机的试运行

带制动器的伺服电机的保持制动器动作由伺服驱动器的制动器联锁输出(/BK) 信号进行控制。

在确认制动器动作的作业中,请事先采取防止机械自然落下以及外力产生振动的应对措施。请在伺服电机与机械 脱离的状态下确认伺服电机的动作与保持制动器的动作。如果各自的动作都正常,则将伺服电机和机械连接在一 起,并进行试运行。

有关带制动器的伺服电机的配线、用户参数的设定,请参照"保持制动器的设定"。

5.2 通用基本功能的设定

5. 2. 1 伺服 ON 设定

对发出伺服电机通电/非通电状态指令的伺服 ON 信号(/S-ON) 进行设定。

(1) 伺服 ON 信号(/S-ON)

44米	连接器针号(出厂	計号(出厂)	가는	辛ツ	
种类	信号名称 单驱 双驱	设定	意义		
<i>t</i> ⇔)	/C ON CN1 01	/S_ON	/S-ON	ON =L 电平	伺服电机通电状态(伺服 ON 状态)。可运行。
输入	/ 2-0N	CN1-21	CN1-5	OFF=H 电平	伺服电机非通电状态(伺服 OFF 状态)。不能运行。

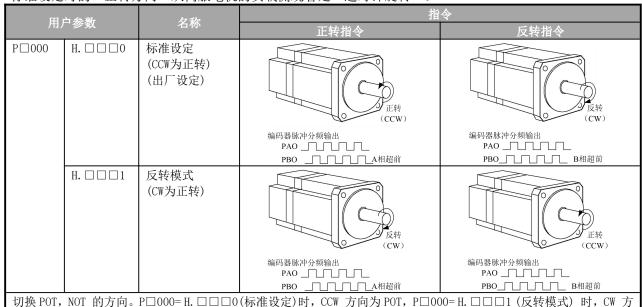
■重要

请务必在发出伺服ON信号之后再发出输入指令以起动/停止伺服电机。请不要先发出输入指令,然后再使用/SON信号起动/停止伺服电机。如果重复进行AC电源的ON与OFF,则会使内部元件老化,导致事故发生。

/S-ON 信号可通过用户参数将输入的连接器针号分配给别处。请参照"输入电路的信号分配"。

(2) 选择使用/不使用伺服 ON 信号

可通过用户参数对常时伺服ON 进行设定。此时不需要/S-ON 的配线,但由于伺服驱动器在电源ON的同时变为动作状态,因此请小心处理。


	用户参数	数	意义
P□509	A 4 H. □□1□		从输入端子 IN1 输入/S-ON 信号。(出厂时的设定)
	A 和	Н. □□9□	将/S-ON 信号固定为常时"有效"
	b 轴 H. □□5□		从输入端子 IN5 输入/S-ON 信号。(出厂时的设定)
	D #H	Н. □□9□	将/S-ON 信号固定为常时"有效"

- 变更本用户参数后,必须重起动电源以使设定生效。
- 设定为信号固定为常时"有效"的情况下,发生警报时仅通过电源重起动即可复位。(报警复位无效。)

5.2.2 电机旋转方向的切换

只需反转伺服电机的旋转方向而不必变更送入伺服驱动器的指令脉冲与指令电压的极性。

此时,轴的移动方向(+,-)反转,但编码器脉冲输出以及模拟量监视信号等来自伺服的输出信号的极性保持不变。标准设定时的"正转方向"从伺服电机的负载侧观看是"逆时针旋转"。

切换 POT, NOT 的方向。P□000= H. □□□0(标准设定)时, CCW 方向为 POT, P□000= H. □□□1(反转模式)时, CW 方向为 POT。

5. 2. 3 超程设定

超程是指机械的可动部分超越可移动设定区域时,使限位开关动作(ON)的状态,伺服驱动器的超程功能就是在这种情况下进行强制停止的功能。

(1) 超程信号的连接

为了使用超程功能,请将下述超程限位开关的输入信号正确地连接到伺服驱动器CN1连接器的相应针号上。

种类	刊起任切能,以 信号名称	出厂设置	カスの棚/16 5 设定	正确地连接到何旅驱勾器CNI连接器的相应;与上。 意义
作失	行与石物	山) 双且	反 足	总 人
输入	РОТ	可正常进行正转	ON =L 电平	可正转侧驱动 (通常运行)
抽八	rui	侧驱动	OFF=H 电平	禁止正转侧驱动 (正转侧超程)
<i>t</i> △)	NOT	可正常进行反转	ON =L 电平	可反转侧驱动 (通常运行)
输入	NOT	侧驱动	OFF=H 电平	禁止反转侧驱动 (反转侧超程)
所示连接即使处于	接限位开关。 F超程状态时,t	为了防止机械损坏, 也可以向相反侧驱动 犬态下,可向反转侧		● 电机正转方向
■重要				
				
要清除位	位置偏移脉冲,重	必须输入清除信号(0	CLR)。	

\triangle

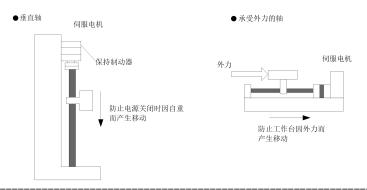
注意

在垂直轴上使用伺服电机时,工件可能会在超程状态下落下。

为了防止工件在超程时落下,请务必设定 P \square 000= H. 1 \square \square 以便在停止后进入零箝位状态。(请参照"使用超程时电机停止方法的选择")

(2) 选择使用/不使用超程信号

不使用超程信号时,可通过设定伺服驱动器内部用户参数,设定为不使用。此时,不需要超程用输入信号的配线。

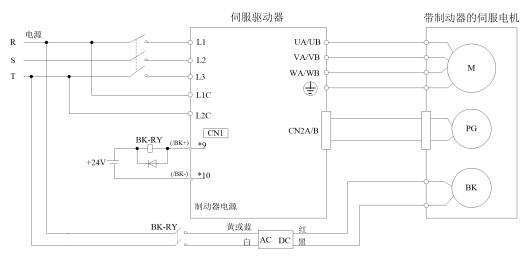

1 12/13/0	17 IH 2 1	7 470,000,000	13/10 12 7 13 13 14 7 17 17 17 17 17 17 17 17 17 17 17 17 1
	用户参	数	意义
P□509	A #:H	Н. □3□□	从 IN3 输入禁止正转驱动信号(POT)。
	A 轴	Н. □9□□	使禁止正转驱动信号(POT)无效。(可正常进行正转侧驱动)(出厂时的设定)
	b 轴	Н. □7□□	从 IN7 输入禁止正转驱动信号(POT)。

		Н. □9□□	使禁止正转驱动信号(POT)无效。(可正常进行正转侧驱动)(出厂时的设定)
	A 轴	Н. 4□□□	从 IN4 输入禁止反转驱动信号(NOT)。
	A 和	Н. 9□□□	使禁止反转驱动信号(NOT)无效。(可正常进行反转侧驱动)(出厂时的设定)
b 轴	1. <i>t</i> /di	Н. 8□□□	从 IN8 输入禁止反转驱动信号(NOT)。
	10 湘	Н. 9□□□	使禁止反转驱动信号(NOT)无效。(可正常进行反转侧驱动)(出厂时的设定)

- 有效控制方式: 速度控制、位置控制、扭矩控制
- 变更本用户参数后,必须重新起动电源以使设定生效。
- * POT,NOT 信号可通过用户参数自由地分配输入的连接器针号。详细内容请参照"输入电路的信号分配"。

5.2.4 保持制动器的设定

在用伺服电机驱动垂直轴等时使用。当伺服驱动器的电源为0FF 时,使用带制动器的伺服电机以保持可动部分不因重力而移动。(请参照"带制动器的伺服电机的试运行"。)



- 1. 内置于带制动器的伺服电机中的制动器为无励磁动作型保持专用制动器。不能用于制动。只能用于保持伺服电机的停止状态。制动扭矩约为伺服电机额定扭矩的120%以上。
- 2. 仅用速度环使伺服电机动作时,在制动器动作的同时,将伺服置为0FF,输入指令设定为"0V"。
- 3. 配置位置环时,由于伺服电机停止时处于伺服锁定状态,因此不要使机械制动器动作。

(1) 连接实例

伺服驱动器的顺序输出信号"/BK"和制动器电源构成了制动器的ON/OFF 电路。标准的连接实例如下所示。

BK-RY: 制动器控制继电器

9*、10*: 是通过用户参数P□514.1分配的输出端子号码。

(2) 制动器联锁输出

种类	信号名称	出厂设置	设定	意义
松山	输出 /BK	通过0UT2输出	ON =L 电平	释放制动器。
1111 ഥ			OFF=H 电平	使用制动器。

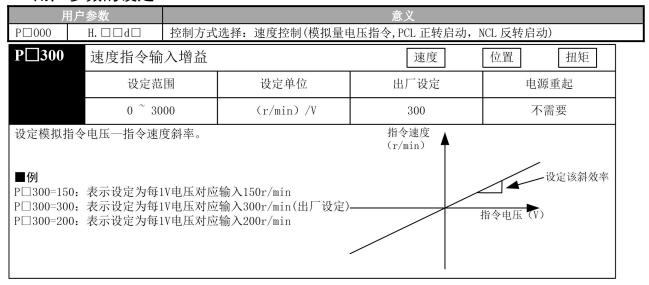
使用带制动器的伺服电机时,是控制制动器的输出信号。另外,本输出信号在出厂时的设定中未使用。需要进行输出信号的分配 ($P\Box 514$ 的设定)。使用不带制动器的电机时不要连接。

(3) 制动器信号(/BK) 的分配

制动器信号(/BK) 在出厂时的设定状态下不能使用。因此需要进行输出信号的分配。

用力	[〕] 参数	连接器针号	意义
P□514	Н. □□0□		不使用/BK 信号。
	Н. □□1□	OUT1	由 OUT1 输出端子输出/BK 信号。
	Н. □□2□	OUT2	由 OUT2 输出端子输出/BK 信号。(出厂时的设定)
	Н. □□3□	OUT3	由 OUT3 输出端子输出/BK 信号。
	Н. □□4□	OUT4	由 OUT4 输出端子输出/BK 信号。
	Н. □□5□	OUT5	由 OUT5 输出端子输出/BK 信号。
	Н. □□6□	OUT6	由 OUT6 输出端子输出/BK 信号。

■重要


出厂时设定的制动器信号(/BK) 是无效的。将多个信号分配给同一输出端子时,采用OR逻辑进行输出。只想使/BK 信号输出有效时,请将分配/BK 信号的输出端子的其他信号分配给别的输出端子或者置为无效。有关伺服单元的其他输出信号的分配方法,请参照"输出电路的信号分配"。

(4) 制动器的时序图

5.3 速度控制(模拟量电压指令)运行

5.3.1 用户参数的设定

5.3.2 输入信号的设定

(1) 速度指令输入

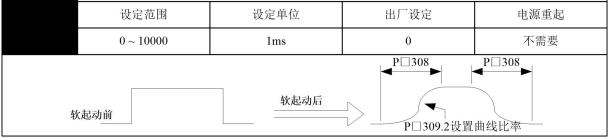
向伺服驱动器发出模拟量电压指令形式的速度指令,则以与输入电压成比例的速度对伺服电机进行速度控制。

种类	信号名称	连接器针号(出厂) 单驱	意义
	V-REF	CN1-12	速度指令输入
输入	GND	CN1-13	速度指令输入用信号地线
和八	PCL	CN1-20	正转启动信号
	NCL	CN1-23	反转启动信号

■输入规格

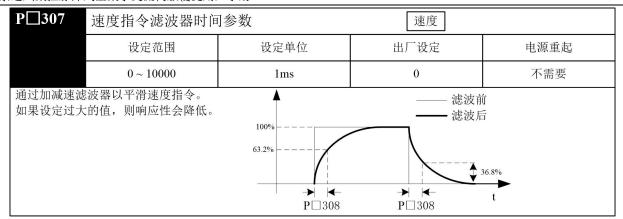
• 输入电压范围: DC 0~10V

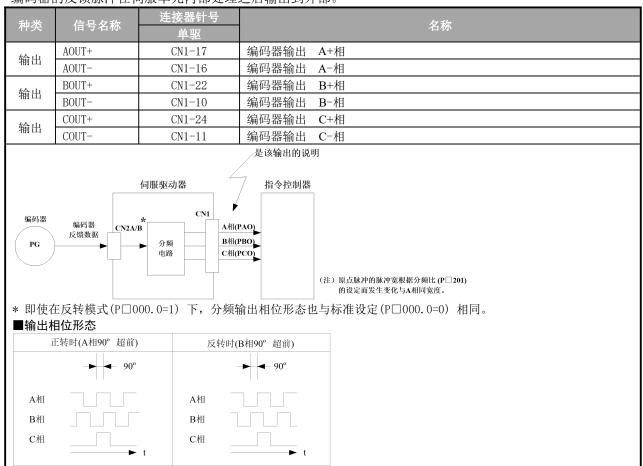
5. 3. 4 软起动


软起动是指在伺服驱动器内部将阶跃速度指令输入转换为加减速一定的指令的功能。

(1) 梯形方式起动

用	月戸参数			意义			
P□309	Н. □□□0	梯形方式	起动				
P□305	软起动加速	时间	间 速度				
	设定范	〕围	设定单位	出厂设定	电源重起		
	0 ~ 100	000	1ms	0	不需要		
P□306	软起动减速	时间	速度				
	设定范	〕围	设定单位	出厂设定	电源重起		
	0 ~ 100	000	1ms	0	不需要		
在输入阶段	 氏速度指令或选择	内部设定速	度时,可进行平滑的速度	控制。(一般的速度控制	请设为"0"。)		
	i: 从停止状态到1000r/min的时间 i: 从1000r/min到停止状态的时间						
	软	起动前		> 	 P 306		


(2) S 曲线方式起动


(3) 加减速滤波方式起动

F	用户参数	意义
P□309	Н. □□□2	加减速滤波方式起动
	Н. □□0□	一次加减速滤波
	Н. □□1□	二次加减速滤波

5.3.5 编码器信号输出

编码器的反馈脉冲在伺服单元内部处理之后输出到外部。

5.4 位置控制运行

5.4.1 用户参数的设定

利用脉冲列进行位置控制时,请设定以下用户参数。

(1) 控制方式选择

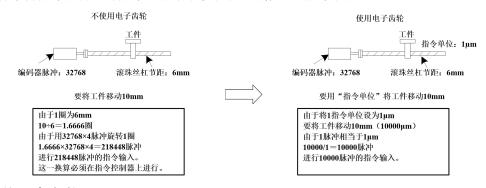
用户参数		意义
P□000	Н. □□1□	控制方式选择: 位置控制(脉冲列指令)

孙米	岸 巴 <i>瓦新</i>	连接器针号		名称	
	种类 信号名	信号名称	单驱	双驱	石 柳
Г	输入	PULS+	CN1-18	CN1-1	指令脉冲输入
ı		PULS-	CN1-6	CN1-2	指令脉冲输入

ſ	SIGN+	CN1-19	CN1-3	符号输入
ı	SIGN-	CN1-7	CN1-4	符号输入

(2) 脉冲指令形态的选择

用)	^户 参数	指令形态	输入倍值	正转指令	>	反转	指令
P□200	Н. 🗆 🗆 0 🗆	符号+脉冲列		PULS SIGN HILE		OULS SIGN	L电平
	H. 🗆 🗆 1 🗆	CW+CCW		PULS L也 SIGN		PULS	L电平
	H. □□2□ H. □□3□ H. □□4□	90°相位差 2相脉冲	×1 ×2 ×4	PULS SIGN		PULS 90°	
■ 补充 90° 相位差		形态时,可设定输	入倍增。	PULS	iE46	反转	
				*1倍 内部处理 *2倍 *4倍			何限电机的移动指令脉冲


(3) 脉冲指令输入取反

月	用户参数	意义
P□200	Н. □0□□	PULS 输入不取反,SIGN 输入不取反
	Н. □1□□	PULS 输入不取反,SIGN 输入取反
	Н. □2□□	PULS 输入取反,SIGN 输入不取反
	Н. □3□□	PULS 输入取反,SIGN 输入取反
用户通过i	设置本参数可以对	脉冲指令的逻辑取反。

5.4.2 电子齿轮的设定

(1) 电子齿轮

电子齿轮功能是指可将相当于指令控制器输入指令1 脉冲的工件移动量设定为任意值的功能。这种来自指令控制器的指令1 脉冲即最小单位叫做"1 指令单位"。

(2) 相关用户参数

P□202	电子齿轮 (分子)	位置		
	设定范围	设定单位	出厂设定	电源重起
	1 ~ 65535	_	1	需要
P□203	电子齿轮 (分母)			位置
	设定范围	设定单位	出厂设定	电源重起
	1 ~ 65535	_	1	需要

如果将电机轴与负载侧的机械减速比设为n/m,则可由下式求出电子齿数比的设定值。

(伺服电机旋转m 圈、负载轴旋转n 圈时)

电子齿轮比 $\frac{B}{A} = \frac{P \square 202}{P \square 203}$

= 编码器脉冲数×4 × m 负载轴旋转1圈的移动量 × m

* 超过设定范围时,请将分子与分母约分成设定范围内的整数。

请注意,不要改变电子齿数比(B/A)。

■重要

电子齿数比的设定范围: 0.01 ≤电子齿数比(B/A) ≤ 100

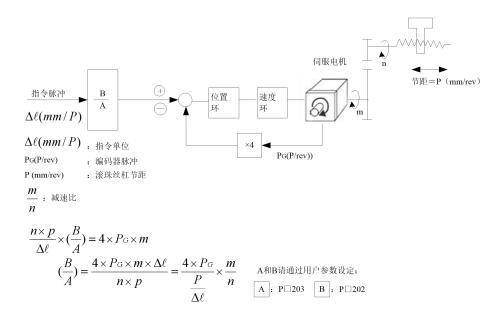
超出上述范围时,伺服驱动器不能正常动作。请变更机械构成或者指令单位。

(4) 电子齿数比的设定步骤

请按以下步骤设定电子齿数比。

步骤	内容	说明
1	确认机械规格	确认减速比、滚珠丝杠节距、滑轮直径等。
2	确认编码器脉冲数	确认所用伺服电机的编码器脉冲数。
3	决定指令单位	决定来自指令控制器的1指令单位。 请在考虑机械规格、定位精度等因素的基础上决定指令单位。
4	计算负载轴旋转1圈的移动量	以决定的指令单位为基础,计算负载轴旋转1圈所需的指令单位量。
5	计算电子齿数比	根据电子齿数比计算公式计算电子齿数比(B/A)。
6	设定用户参数	将计算出来的数值设定为电子齿数比。

(5) 电子齿数比的设定实例


实际上,根据几个实例决定电子齿数比。

			机器构成	
		滚珠丝杠	圆台	皮带+ 滑轮
步骤	内容	指令单位: 0.001mm 负载轴 17位编码器 滚珠丝杠节距: 6	指令单位: 0.1° 减速比3: 负载轴 17位编码器	指令单位: 0.02mm 负载轴 项速比2: 1 滑轮直径Φ100mm
1	确认机械构成	・滚珠丝杠节距: 6mm ・減速比: 1/1	1 圈的旋转角: 360° 减速比: 3/1	滑轮直径: 100 mm (滑轮周长: 314 mm) • 减速比: 2/1
2	编码器	17 位: 32768P/R	17 位: 32768P/R	17 位: 32768P/R
3	设定指令单位	1 指令单位: 0.001mm(1)	m) 1 指令单位: 0.1°	1 指令单位: 0.02mm
4	负载轴旋转1圈 的移动量	6mm/0.001mm=6000	360° /0.1° =3600	314mm/0.02mm=15700
_	计算电子齿数	B 32768×4 1	B 32768×4 3	B 32768×4 2
5	比	${A} = {6000} \times {1}$	$\overline{A} = \overline{3600} \times \overline{1}$	$\frac{1}{A} = \frac{15700}{1} \times \frac{1}{1}$
6	设定用户参数	P□202 131072	* P□202 393216	P□202 262144
0	仅止用尸多数	P□203 6000	P□203 3600	P□203 15700

* 由于计算结果未处在设定范围内,因此应对分子与分母进行约分。

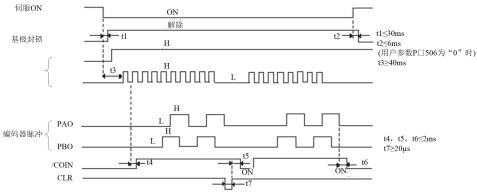
比如,用4 对分子与分母进行约分,则P□202=32768,P□203=1500,此时设定就已经完成。

(6) 电子齿数比的计算公式

5.4.3 位置指令

发出脉冲列形式的指令,对伺服电机进行位置控制。 指令控制器的脉冲列输出形态包括下述几种类型。

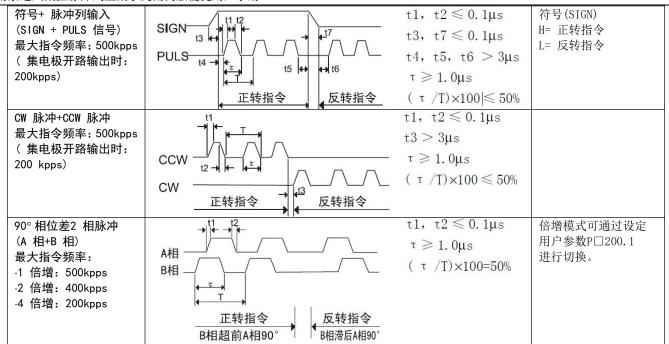
- 总线驱动器输出
- +24V 集电极开路输出
- +12V 集电极开路输出
- +5V 集电极开路输出


■集电极开路输出时的注意事项

通过集电极开路进行脉冲输入时,输入信号的噪音容限就会下降。

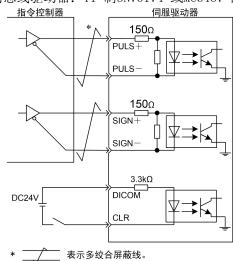
因噪音而发生偏移时,请在下述用户参数中进行变更。

用户参数		意义
P□200	Н. 1□□□	集电极开路信号用指令输入滤波

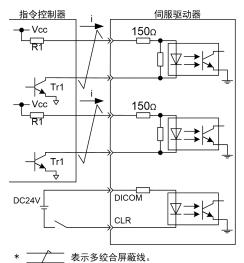

(1) 输入输出信号的定时例子

- (注) 1. 从伺服ON信号置为ON起到输入指令脉冲之间的间隔应控制在40ms以上。如果在伺服ON信号置为ON起的40ms以 内输入指令脉冲,那么伺服驱动器有时不接受指令脉冲。
 - 2. 请将清除信号的0N设定为200µs以上。

表: 指令脉冲输入信号的定时


化人的油片口形大	中午切ね	夕许
指令脉冲指方形态	电气燃管	留 注

(2) 连接实例


(a) 总线驱动器输出的连接实例

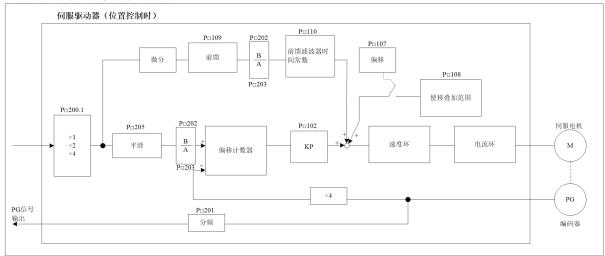
适用总线驱动器: TI 制SN75174 或MC3487 的等同品

(b) 集电极开路输出的连接实例

请选择限制电阻R1 的值,确保输入电流i 进入到下述范围内。输入电流 $i=7\sim15\text{mA}$

请参照以下适用实例设定工作电阻R1的值以使输入电流i处在7mA-15mA范围内。

适用实例			
	20.00	Vcc为5V时 R1=180Ω	


(注):

通过集电极开路输出发出指令脉冲时,输入信号的噪音容限降低。因干扰而发生偏移时,请将用户参数P□200.3设为"1"。

→ **以** 从小乡或自所服务

(3) 控制框图

位置控制时的控制框图如下所示。

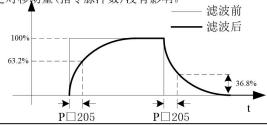
5. 5. 4 平滑

伺服单元内部可对一定频率的指令脉冲输入进行滤波。

(1) 位置指令滤波器的选择

月	用户参数	意义
P□206	Н. □□□0	一次加减速滤波
	Н. □□□1	二次加减速滤波

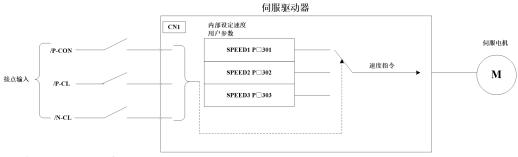
(2) 滤波器相关用户参数


P□205	位置指令加减速滤波	皮器时间参数		位置
	设定范围	设定单位	出厂设定	电源重起
	0 ~ 6400	0.1ms	0	不需要

■重要

在变更位置指令加减速时间参数(Pn204)的情况下,没有指令脉冲输入并且偏移脉冲为0时变更的值才生效。为了切实地反映所设定的值,请输入清除信号(CLR)以禁止指令控制器的指令脉冲,或者作为伺服0N清除偏移脉冲。即使在以下均合,也能平滑地区时间机。另外,本设定对移动量(指令脉冲数)没有影响。

• 发出指令的指令控制器不能进行加、减速时


- 指令脉冲的频率较低时
- 电子齿数比较大时(10 倍以上)

5.5 速度控制(内部速度选择)运行

• 内部设定速度选择的意思

内部设定速度选择是通过伺服驱动器内部的用户参数事先设定3 种电机转速并利用外部输入信号选择其速度以进行速度控制运行的功能。对于运行速度为3种电机转速以内的速度控制动作是有效的。 不必在外部配置速度发生器或者脉冲发生器。

5.5.1 用户参数的设定

用户参数						
P□000	厂	控制方式	选择: 内部设定速度控制			
P□301	内部设定速	度1	速度			
	设定范	围	设定单位	出厂设定	电源重起	
	0 ~ 60	00	1r/min	100	不需要	
P□302	内部设定速	度2	速度			
	设定范	围	设定单位	出厂设定	电源重起	
	0 ~ 60	00	1r/min	200	不需要	
P□303	内部设定速	度3		速度		
	设定范	.围	设定单位	出厂设定	电源重起	
	0 ~ 60	00	1r/min	300	不需要	
(注) 即使在P□3	(注) 即使在P□301~P□303中设定超过所用伺服电机最大转速的值,实际值仍被限制为所用伺服电机的最大转速。					

5.5.2 输入信号的设定

私米	冷见力粉	连接器针号	名称
件失	信号名称	单驱	冶 柳

	/P-CON	需要分配	伺服电机旋转方向切换
输入	/PCL	需要分配	内部设定速度选择
	/NCL	需要分配	内部设定速度选择

■关于输入信号选择

单轴驱动器时: 出厂时/PCL、/NCL已分别被分配到CN1-20、CN1-23。

双轴驱动器时:/PCL、/NCL需通过参数P□510进行分配。

• 利用/P-CON, /P-CL, /N-CL 三个输入信号的运行方式(出厂时的设定为针已分配)

5.5.3 内部设定速度运行

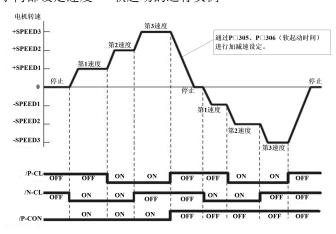
利用以下输入信号的ON/OFF 组合,可通过内部设定进行运行。

	输入信号			
/P-CON	/PCL	/NCL	电机旋转方向	
	OFF (H)	OFF (H)		用内部速度指令 0 进行停止
OFF (H)	OFF (H)	ON(L)	正转	P□301: 内部设定速度 1(SPEED1)
OFF (II)	ON (L)	ON(L)	正我	P□302: 内部设定速度 2(SPEED2)
	ON (L)	OFF (H)		P□303: 内部设定速度 3(SPEED3)
	OFF (H)	OFF (H)	r: ++	用内部速度指令 0 进行停止
ON(L)	OFF (H)	ON(L)		P□301: 内部设定速度 1(SPEED1)
ON (L)	ON (L)	ON(L)	反转	P□302: 内部设定速度 2(SPEED2)
	ON (L)	OFF (H)		P□303: 内部设定速度 3(SPEED3)

(注) 信号OFF(H电平),信号ON(L电平)

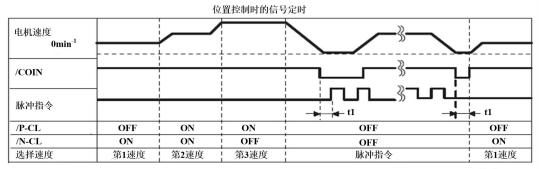
■控制方式为切换模式时

P□000.1 = 4, 5, 6 时, 如果/PCL, /NCL中的任何一个信号置为0FF (H电平), 则进行控制方式切换。


例)P□000.1=5:设定内部设定速度选择设定速度选择<--->位置控制(脉冲列)时

输入	信号	运行速度	
/PCL	/NCL		
OFF (H)	OFF (H)	用内部速度指令 0 进行停止	
OFF (H)	ON (L)	P□301: 内部设定速度 1(SPEED1)	
ON(L)	ON (L)	P□302: 内部设定速度 2(SPEED2)	
ON(L)	OFF (H)	P□303: 内部设定速度 3(SPEED3)	

• 基于内部速度设定选择的运行实例


如果使用软起动功能,则速度切换时的冲击会变小。 有关软起动,请参照"软起动"。

例) 基于内部设定速度 + 软起动的运行实例

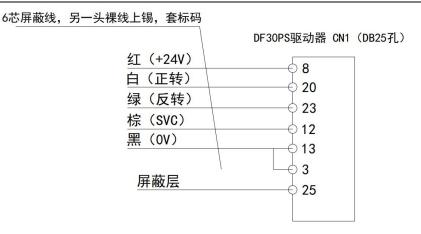
设定为"(P□000.1=5 内部设定速度控制<-->位置控制)"时,软起动功能仅在选择内部设定速度时起作用。在脉冲指令输入时,不能使用软起动功能。如果正在以第1~第3速度中的任一速度运行时切换至脉冲指令输入,伺服驱动器则在定位完成信号(/COIN)输出后受理脉冲指令。请务必在伺服驱动器的定位完成信号输出后,再开始输出用户指令控制器的脉冲指令。基于(内部设定速度+软起动)<-->位置控制(脉冲列指令的运行实例)

t1>2ms

- (注) 1. 上图所示为使用软起动功能时的情况。
 - 2. t1 的值不因是否使用软起动而受到影响。 /PCL,/NCL的读入最多有2ms的延时。

第六章 调试与应用

6.1 快速调试注意事项

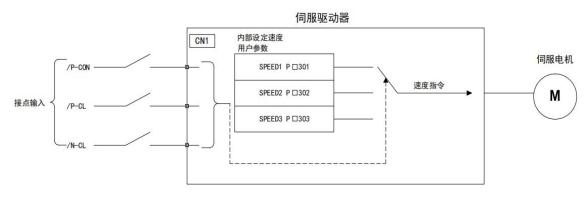

- R、S、T和U、V、W不可接反,不可有松动的现象。
- 电机连接线缆有无接地或短路现象。
- 同一台驱动器线缆(动力线,编码器线)一定要连接同一台电机。

6.2 常用参数调试说明

参数编号	参数名称	参数调试方法
PA100	速度环增益	设置值越大,刚性越大;
		在系统不产生振荡及啸叫的情况下,尽可能设定较大值。
PA101	速度环积分时间常数	减小此值可以缩短定位时间,提高速度响应。
PA102	位置环增益	此值决定了位置环的增益大小,增大该值可以提高位置控制的伺服刚性,但
		过大可能引起振荡。
PA134	加速度补偿系数	增大该值,可以消除电机静止抖动问题,该值太大,会引起啸叫;
		该补偿,可以使低速更加平稳。
PA135	加速度补偿一阶滤波	增大该值,可以让加速度补偿更加平滑。
	系数	
PA136	速度低通滤波系数	增大该值,可以让反馈速度更加平稳,该值太大,会引起转速滞后,造成系
		统不问题,导致振荡。
PA137	加速度补偿二阶滤波	增大该值,可以让加速度补偿更加平滑。
	系数	
PA200	位置控制指令形态选	PA200.bit1 指令脉冲形态: 0 符号+脉冲;
	择开关	1 CW+CCW;
		2 ── A 相+B 相 (1 倍频);
		3 ── A 相+B 相 (2 倍频);
		4 ── A 相+B 相 (4 倍频)。
PA401	扭矩指令滤波时间常	设置扭矩滤波可以消除或减轻机械振动,但设置不合理时有时会引入机械振
	数	动。
PA509	输入信号选择1	PA509.bit0 Son 信号分配: 0 Son 无效;
		9 Son 一直有效,内部强制使能;
		设置其他值时, Son 信号通过设置的输入口进入。

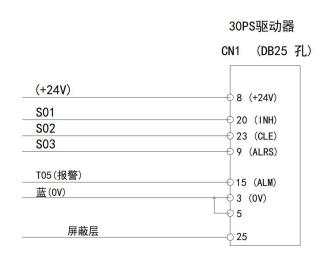
6.3 模拟量速度控制调试

- 1、接线设定:
- CN1-20 脚正转控制
- CN1-23 脚反转控制
- CN1-8 脚公共端 24V
- CN1-12 脚模拟量输入(0~10V);
- CN1-13 脚模拟量地



2、参数设定:

- PA000:H00d0;
- PA510:H2500;
- PA509:H9909;


6.4 内部速度控制调试

- 内部设定速度选择是通过伺服驱动器内部的用户参数事先设定 3 种电机转速并利用外部输入信号选择 其速度以进行速度控制运行的功能。对于运行速度为 3 种电机转速以内的速度控制动作是有效的。
- 不必在外部配置速度发生器或者脉冲发生器。

1. 接线设定:

- CN1-20 脚 INH 控制
- CN1-23 脚 CLE 控制
- CN1-9 脚 ALRS 控制
- CN1-8 脚公共端 24V

2、参数设定

• PA000:H0030;

- PA301:速度设定值 1:
- PA302:速度设定值 2:
- PA303:速度设定值 3;
- PA305:启动加速度时间;
- PA306:停止加速度时间;
- PA509:H9939:
- PA510:H2500:

3、内部速度控制逻辑

利用以下输入信号的ON/OFF 组合,可通过内部设定进行运行。

和市外中間外間 1000 01 五百,1200日即及及及自2010						
	输入信号		电机旋转方			
/P-CON(ALRS)	/PCL(CLE)	/NCL(INH)	向			
	OFF (H)	OFF (H)		用内部速度指令 0 进行停止		
OFF (H)	OFF (H)	ON (L)	正转	P□301: 内部设定速度 1(SPEED1)		
OFF (ff)	ON(L)	ON (L)	上 刊 上 刊	P□302: 内部设定速度 2(SPEED2)		
	ON(L)	OFF (H)		P□303: 内部设定速度 3(SPEED3)		
	OFF (H)	OFF (H)		用内部速度指令 0 进行停止		
ON(L)	OFF (H)	ON(L)	反转	P□301: 内部设定速度 1(SPEED1)		
ON (L)	ON(L)	ON (L)	汉 书	P□302: 内部设定速度 2(SPEED2)		
	ON(L)	OFF (H)		P□303: 内部设定速度 3(SPEED3)		

(注) 信号OFF(H电平), 信号ON(L电平)

6.5 自适应陷波器调试

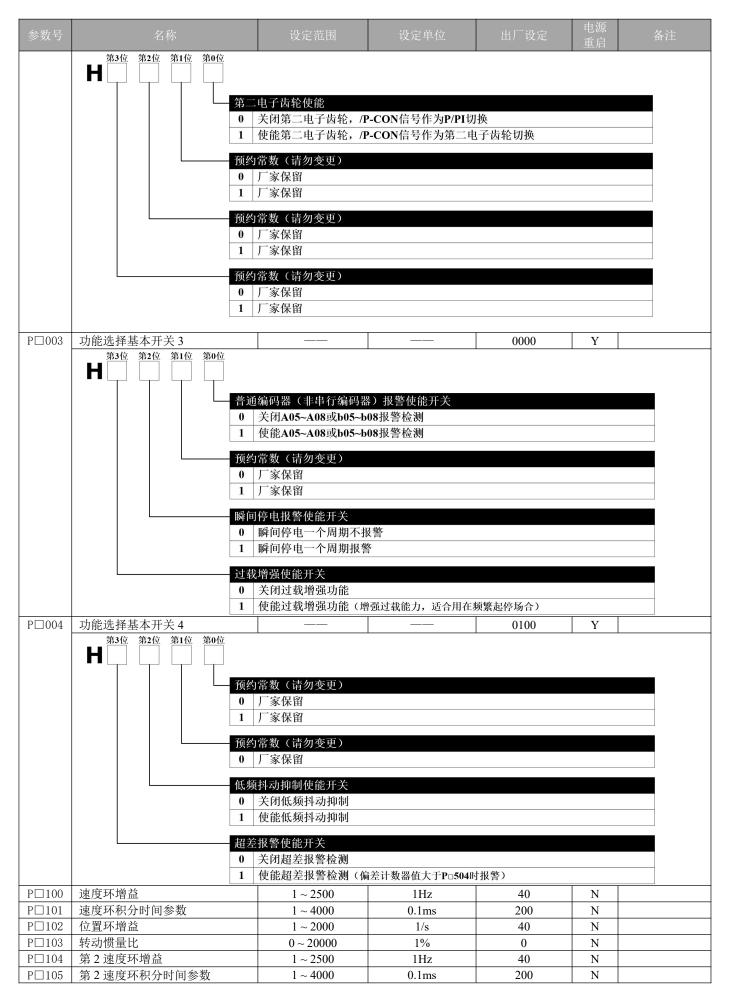
(1) 手动设定陷波器参数的操作步骤

将 PA144 设置成 3, 让电机处于运行状态,此时监控 Un020 (共振频率),若 Un020 中出现大于 300 的值,将该数值设定到 PA409 中。观测电机振动是否消除。若电机振动未消除,可进行第(2)步进行自适应陷波器自动设定。

- (2) 自动设定陷波器参数的操作步骤
 - ①根据共振点的个数设置 PA144(自适应陷波器模式选择)为1或2:

当发生共振时,可先将 PA144 设置为 1,开启一个自适应陷波器,待增益调整后,若出现新的共振,再将 PA144 设置为 2,启动两个自适应陷波器。

- ②伺服运行时,第一或第二组陷波器参数被自动更新,且每隔 30min 自动存入对应的 PA 参数一次。
- ③若共振得到抑制,说明自适应陷波器取得效果,等待伺服稳定运行一段时间后,将 PA144 设为 0 时,自适应陷波器参数被固定为最后一次更新的值。

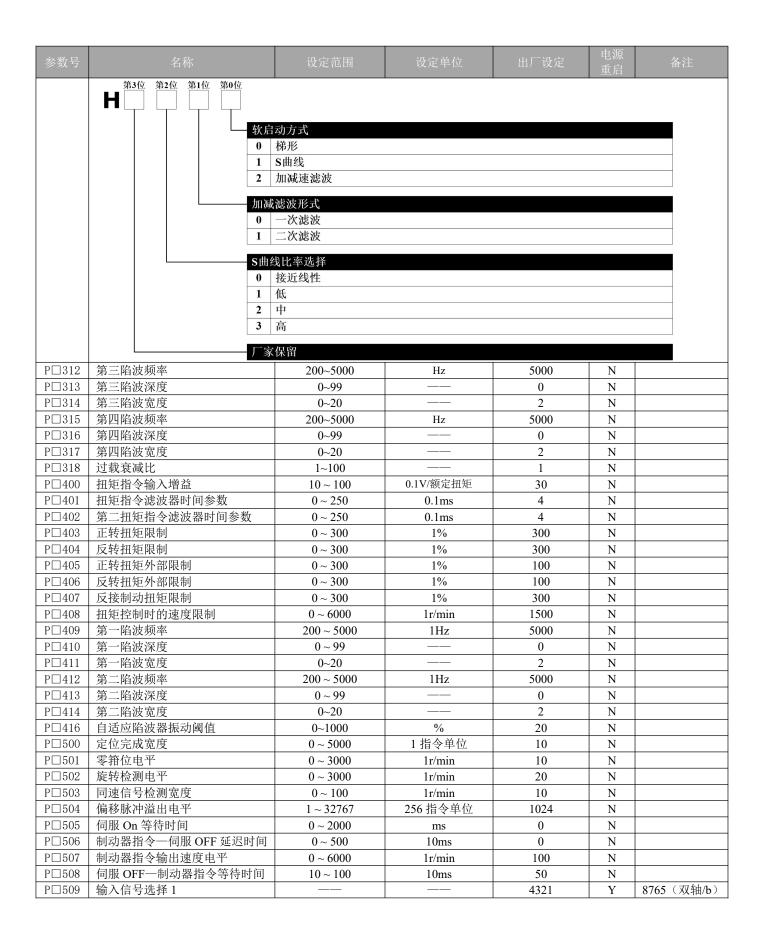

此步骤操作可防止由于伺服运行过程中发生误动作,导致陷波器参数被更新为错误值,反而加剧振动的状况。 ④若振动长时间不能消除请及时关闭伺服使能。

注:

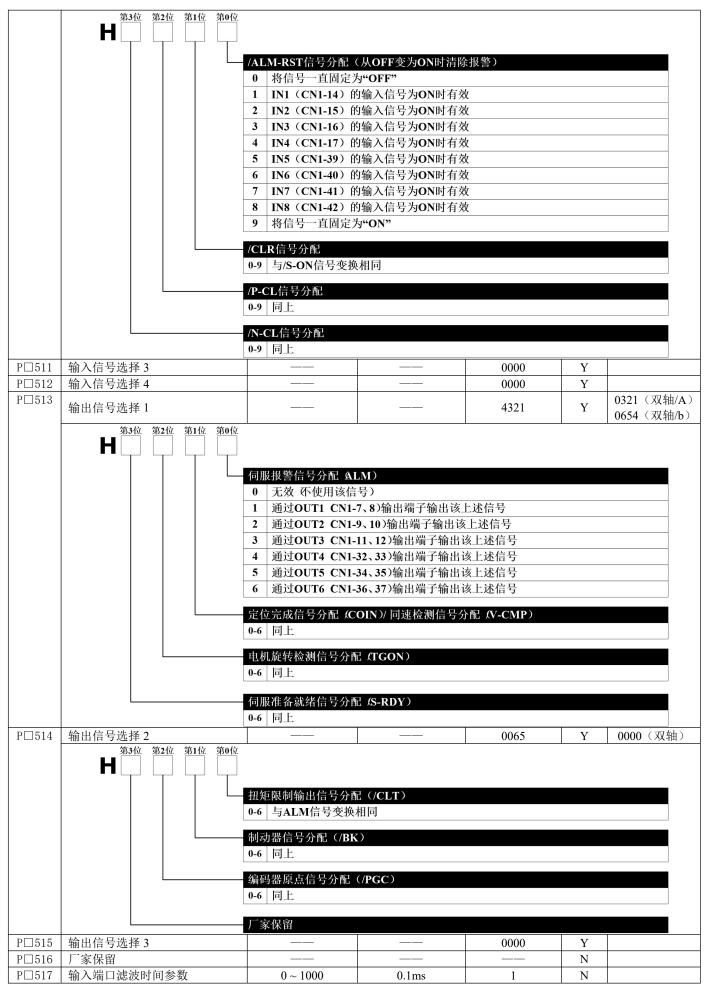
- 1) 使用自适应陷波器时,若在30min 内发生伺服使能OFF,陷波器参数不会存入对应的PA参数;
- 2) 共振频率在 300Hz 以下时, 自适应陷波器的效果会有所降低。

附录 A 用户参数一览表

参数号 名称		设定范围	设定单位	出厂设定	电源重启	备注
P□000 功能选择基本开关				0010	Y	
第3位 第2位 第1位 第0位	Ĭ.				1	I
H						
		方向选择				
	0	以CCW(逆时针)为				
	1	以CW(顺时针)为正	(特力问(反特限式)			
	控制	方式选择				
	0	速度控制(模拟量指令	>)			
	1	位置控制(脉冲列指令				
	2	扭矩控制(模拟量指令	<u> </u>			
	3	内部设定速度控制(排				
	4	内部设定速度控制(技术				
	5	内部设定速度控制(挂				
	7	内部设定速度控制(挂位置控制(脉冲列指令				
	8	位置控制(脉冲列指令				
	9	扭矩控制(模拟量指令				
	A	速度控制(模拟量指令		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	В	位置控制(脉冲列指令	◇) ←→ 位置控制(崩	(冲禁止)		
	C	内部位置控制				
	D	速度控制(模拟量指令	冷: PCL控制正转, NO	CL控制反转)		
		主轴定向控制				
	F	主轴速度/位置(Cs)	控制			
	- 伺服	OFF的停止方式				
	0	反接制动使电机减速停	上, 然后置于自由滑	行状态		
	1	将电机置于惯性运行状	态			
	- 詔科	【(OT)时的停止方式				
		反接制动使电机减速停		行状态		
	1	反接制动使电机减速停				
	2	将电机置于惯性运行机	犬 态			
P□001 功能选择基本开关 1				0001	Y	
第3位 第2位 第1位 第0位	Ĭ.					
H						
	编和	器的使用方法				
	0 0	将绝对值编码器用作组	对值编码器 使能绝对	信数据串行输出(P	G分版PAG	0 □)
	1	将绝对值编码器用作增		THE STATE OF THE PERSON IN THE	- 73 7XI ZI	/
	2	将绝对值编码器用作组		対值数据串行输出		
		控制选项(T-REF分配				
	0	无	= VEL #41#A)			
	1	将T-REF用作外部扭矩将T-REF用作扭矩前宽				
	3	P-CL、N-CL"有效"时	1 10000 B	田 年 阻 制 絵 À		
	-		,何1-KLF用作作的	山水 PK 啊 棚 八		
		控制选项(V-REF分配	E)			
		无				
	1	将V-REF用作外部扭矩	巨限制输入			
1 1	1	: 65.45 Jan 17.45 Vb. 47				
	一川塊	皮削饭形式选择				
	一 加速 0	度前馈形式选择 加速度前馈类型1(滤	波计算法)			
	100					



南京达风数控脉冲式全数字交流伺服便捷用户手册


	数全脉件以主数于文机间放使促用/ 				电源				
参数号	名称	设定范围	设定单位	出厂设定	重启	备注			
P□106	第2位置环增益	1 ~ 2000	1/s	40	N				
P□107	偏移 (速度偏置)	0 ~ 450	1r/min	0	N				
P□108	偏移叠加范围	0 ~ 5000	1 指令脉冲	10	N				
P□109	前馈	0 ~ 100	1%	0	N				
P□110	前馈滤波时间参数	0 ~ 640	0.1ms	0	N				
P□111	加速度前馈百分比	0 ~ 100	1%	0	N				
P□112	加速度前馈滤波时间参数	0 ~ 640	0.1ms	0	N				
P□113	增益类应用开关	0000 ~ 0064		0000	Y				
	0 1 2 3 4 1 2 3 4 5 6	开关选择 以内部扭矩指令为条件 以速度为条件 以加速度为条件 以偏移脉冲指令为条件 没有模式开关功能 增益切换条件选择 无自动增益切换(因为外部开关增益切换(因为的, 担矩百分置偏移条件下均 给定加速度数值(10m 给定速度指令输入 保留	(电平设定:Po1 (电平设定:Po1	15) 16)					
	厂家	保留							
P□114	模式开关(扭矩指令)	0 ~ 300	1%	200	N				
P□115	模式开关 (速度指令)	0~10000	1r/min	0	N				
P□116	模式开关 (加速度指令)	0 ~ 3000	10r/min/s	0	N				
P□117	模式开关(偏移脉冲)	0~10000	1 指令脉冲	0	N				
P□118	增益切换延迟时间	0~20000	0.1ms (单轴)	0	N	0.2ms (双轴)			
P□119	增益切换幅度	0~20000	自由	0	N				
	增益切换幅度 0~20000 自田 0 N P□113.1 = 2 时,单位: 1% P□113.1 = 3 时,单位: 1指令脉冲 P□113.1 = 4 时,单位: 10r/min/s P□113.1 = 5 时,单位: 1r/min P□113.1 = 6 时,单位: 1指令脉冲								
P□120	位置增益切换时间	0~20000	0.1ms (单轴)	0	N	0.2ms (双轴)			
P□121	增益切换切换滞环	0 ~ 20000	1 指令脉冲	0	N				
P□122	摩擦负载	0 ~ 3000	1‰	0	N				
P□123	摩擦补偿速度滞环区	0 ~ 100	1r/min	0	Y				
P□124	粘滞摩擦负载	0~20000	1‰/1krpm	0	N				
P□125	摩擦增益	0~30000	_	0	N				
P□126	速度观测器周期	0 ~ 100	0.1ms	0/35/70	N				
P□127	在线自动调谐类开关			1340	Y/N				

参数号	名称	设第	定范围	设定单位	出厂设定	电源重启	备注
	第3位 第2位 第1位 第0位 ►■	<u> </u>					
		实时自动增益	公置			111	源重启
			动增益调整				
		100 0 100 00 00 00 00	aced total to a extreme	负载惯量没有变化场合)			
				负载惯量变化很小场合)			
				负载惯量变化很大场合)			Y
				负载惯量没有变化场合)			00000
				负载惯量变化很小场合)			
		6 垂直负载	(适合运行时	负载惯量变化很大场合)			
		实时自动增益					源重启
				問整时的机械刚性。此参			***
				大,系统增益会发生显著 E监视机器运行状况的同			N
		厂家保留					
		常规自动调整	模式投置			ıtı	源重启
				方向: CCW → CW			
				方向: CCW → CW			
			20, 0 0 0 0	方向: CCW → CW			
		212221222	10. 2 2 2 2 3	方向: CCW → CW			
			333 N N N N N N N N N N N N N N N N N N	方向: CW → CCW			N
				方向: CW → CCW			
				方向: CW → CCW			
		7 旋转圈数	: 4圈,旋转	方向: CW → CCW			
P□128	过压检测滤波时间	0.	~200	0.5ms	4	N	
P□129	欠压检测滤波时间	0.	~200	0.5ms	50	N	
P□130	泄放点电压设置	35	0~400	1V	380	Y	
P□133	补偿开关	-			0000	Y	
	PA133.bit0一速度低通滤	波开关,0关	闭,1打升	F(PA136 为低通》			
	PA133.bit1—加速度反馈	开关,0关闭	, 1打开	(PA134 为加速度质	支馈系数,PA13	5 为加速	東度反馈滤波 距
	间常数);						
	PA133.bit2—加速度反馈	作用范围选择	E. 0 电机	静止时使用.1全ì	東范围使用:		
	PA133.bit3—加速度反馈					任通前的	() 東度进行加坡
	度计算:	11 异世直边17	F,U 以	心伙/口的还/又处门/	加述[及17 异,1	以他的自	7还/文丛17 加及
D□124	72 - 1 7 7	0	2000	0/	20	NI	
P□134 P□135	加速度补偿系数		250 ×250	% 0.1ms	30	N N	
P□135 P□136	加速度补偿一阶滤波系数 速度低通滤波系数						
P□136 P□137	加速度补偿二阶滤波系数		10000	0.01ms	60	N	
P□13 <i>t</i>	加速度补偿—所滤波系数 控制开关参数		~250 0~0601	0.1ms	5 0601	N Y	
1 🗆 190	PA138.hex0一加速度补偿					<u> </u>	
			ピトベ ロコノーブ	、 U-/ I/ 5 / I- / 5	//LN ;		
	PA138.hex1—速度环变积		b 床 77 <i>1</i> 人)	松山竹口、			
	0-模式 0 (考虑			.制出付亏力			
	1-模式1(只考		C埋)				
	2-模式 2(正常						
	PA138.hex2—电流环积分						
	0-积分分离关闭	Ι,					
	1-积分分离模式	1(此时配台	F PA142,PA	A143 调试),			
	2-积分分离模式						
	3-积分分离模式						
	4-积分分离模式						
	5-积分分离模式						
P□139	6-积分分离模式				2500	***	1
	电流响应频率	1 10~	-30000	rad/s	2500	Y	T. Control of the Con

	数控脉冲式全数字交流伺服便捷用)	¬于册				
参数号	名称	设定范围	设定单位	出厂设定	电源重启	备注
P□140	电压低通滤波时间	0~65535	0.01ms	0	Y	
P□141	控制开关参数	0000~1111		0	Y	
	PA141.hex0一母线电压是否参与控	制: 0-不参与, 1-参与	<u> </u>			
	PA141.hex1一电流前馈功能是否打	开: 0-不打开, 1-打开	F			
	PA141.hex2-速度指令低通滤波使	能开关: 0-不使能, 1	-使能			
	PA141.hex3-速度环变 PI 开关: 0	-不打开,1-打开				
P□142	电流环积分分离系数 1	0~2000	%	400	N	
P□143	电流环积分分离系数 2	1~3000	%	20	N	
P□144	自适应陷波模式选择	0~4		0	N	
	0第一、第二组自适应陷波器	· · · · · · · · · · · · · · · · · · ·				
	11 个自适应陷波器有效,第		!据振动情况	 手		
	22 个自适应陷波器有效,第					
				九天町 文別		
	3仅测试共振频率,在 Un02			·		
	4-清除自适应陷波器,恢复第	一组和第二组陷汲	[器的值到出] 状态			
P□200	位置控制指令形态选择开关			0000	Y	
	第3位 第2位 第1位 第0位					
	H _					
		脉冲清除方式				
		伺服OFF时清除偏移肋	冲 超程时不清降偏	移脉冲		
		伺服OFF或超程时,不		ו זאנו עו		
		伺服OFF或超程时(零	AND ADDRESS OF STREET STREET, ST.	脉冲		
			WHIELDSTON HAIDS	23.4.1		
		脉冲形态				
		符号+脉冲				
		CW+CCW				
		A 相+ B 相(1倍频)				
		A 相+ B 相(2 倍频)				
	4	A相+B相(4倍频)				
	指令	脉冲信号取反				
	0	PULS指令不取反,SIO	GN指令不取反			
	1	PULS指令不取反,SIO	GN指令取反			
	2	PULS指令取反,SIGN	N指令不取反			
	3	PULS指令取反,SIGN	N指令取反			
	NEXL	un Mr PA				
		器选择	×) 20台2中 HB			
		总线驱动器信号指令输 集电极开路信号指令输				
D C OO1				2500	37	
P□201	PG 分频数	16 ~ 32768	1P/rev	2500	Y	
P□202	第1电子齿轮比(分子)	1 ~ 65535		1	Y	
P□203	第1电子齿轮比(分母)	1 ~ 65535		1	Y	
P□204	第2电子齿轮比(分子) 位置指令加减速时间参数	1 ~ 65535		1		
P□205 P□206	位置指令加减迷时间参数 位置指令滤波形式选择	0 ~ 6400 0 ~ 1	0.1ms	0	N Y	
P□206 P□300	位直指令滤波形式选择	0 ~ 1 0 ~ 3000	(r/min) /\(\text{\text{\text{T}}\)			
P□300 P□301		0 ~ 3000 0 ~ 6000	(r/min) /V 1r/min	150 100	N N	
P□301	内部速度 2	0 ~ 6000	1r/min	200	N	
P□302	内部速度 3	0 ~ 6000	1r/min	300	N	
P□304	微动(JOG)速度	0 ~ 6000	1r/min	500	N	
P□304		0~0000	1ms	0	N	
P□306		0 ~ 10000 0 ~ 10000	1ms	0	N	
P□307	速度指令滤波常数	0 ~ 10000 0 ~ 10000	1ms	0	N	
P□308	S曲线上升时间	0~10000	1ms	0	N	
P□309	速度指令曲线形式		——	0000	Y	
	~~~ 11 × 四~ハンハ	I		1 0000	1 1	



参数号	名称	设定范围	设定单位	出厂设定	电源 重启	备注
	第3位 第2位 第1位 第0位					
		/S-ON信号分配				
		0 将信号一直固定	5 9 10 10 10 N	<u>.</u>		
			的输入信号为ON时有效 的输入信号为ON时有效			
			n細八信号为ON时有象 的输入信号为ON时有效			
			的输入信号为ON时有效			
			的输入信号为ON时有效	×2		
		6 IN6 (CN1-40)	的输入信号为ON时有效	Έ		
			的输入信号为ON时有效			
			的输入信号为ON时有效	ά		
		9 将信号一直固定	为"有效"			
		/P-CON信号分配(为	ON时P控制)			
		0-9 同上				
		P OT信号分配(为O)	FF时禁止正转侧驱动)			
			为"禁止正转侧驱动"			
			的输入信号为ON时有效	ά		
		2 IN2 (CN1-15) f	的输入信号为ON时有效	ζ		
		3 IN3 (CN1-16)	的输入信号为ON时有效	ά		
			的输入信号为ON时有效			
		1000	的输入信号为ON时有效			
			的输入信号为ON时有效			
		22	的输入信号为ON时有效 的输入信号为ON时有效	.00		
			n細八信亏为UN的有象 为"允许正转侧驱动"	· ·		
		N 2 N 10	3. 3. 10. 8. 33. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10			
			FF时禁止反转侧驱动)			
			为"禁止反转侧驱动"	r		
			的输入信号为ON时有效	3310		
			的输入信号为ON时有效 的输入信号为ON时有效			
			的输入信号为ON时有效 的输入信号为ON时有效			
			的输入信号为ON时有效			
			的输入信号为ON时有效	A		
			的输入信号为ON时有效			
			的输入信号为ON时有效	ά		
		9 将信号一直固定	为"允许反转侧驱动"			
P□510	输入信号选择 2			8765 (单轴)	Y	0000 (双轴)



南京达风数控脉冲式全数字交流伺服便捷用户手册

P□518	报警输入滤波时间参数	0 ~ 3	0.1ms	1	N	
P□519	输入端口信号有效电平选择1			0000	N	
P□520	输入端口信号逻辑选择 2			0000	N	
P□521	输出端口信号取反选择 1			0000	N	
P□522	输出端口信号取反选择 2			0000	N	
P□525	过载报警检测阈值	100~150	%	100	N	
P□526	AD 自校准拖动电压	0~200	0.01V	50	N	
P□529	死区补偿设定值	1~300	1us	90	N	
P□530	死区补偿阈值	1~5000	0.1%	300	N	
P□602	控制参数	0000~1111		1101	N	
	hex0 堵转报警(A07) 检测使能标	志: 1-使能电机堵转扫	报警检测;0-不使能申	<b>电机堵转报警检测</b>		
	hex1 再生过载(A31)检测使能标	志: 1-不使能再生过载	载(A31)检测;0-使	更能再生过载(A31	)检测	
	hex2 总线编码器过速(A41)检测	使能标志: 1-不使能感	总线编码器过速检测;	0-使能总线编码器	器过速检测	则
	hex3 死区补偿使能标志: 1-死区补	偿使能; 0-死区补偿	不使能			
P□603	堵转检测时间窗口	1~65535	1ms	400	N	
P□604	堵转检测速度阈值	0~30000	0.1rpm	10	N	

# 附录 B 报警显示一览表

## B.1 报警显示一览

报警显示与报警编码输出ON/OFF 之间的关系如下表所示。发生警报时的电机停止方法:自由运行停止:不用制动,通过电机旋转时的磨擦阻力的自然停止方法

报警显示	ALM 输出	报警名称	报警内容	可否清除
□01	Н	编码器 PA,PB,PC 断线	编码器未接或电缆焊接问题。	可
□02	Н	编码器 PU, PV, PW 断线	编码器未接或电缆焊接问题。	可
□03	Н	过载	超过额定扭矩连续运转。	可
□04	Н	A/D 转换通道异常	A/D 转换通道异常	可
□05	Н	PU,PV,PW 非法代码	PU, PV, PW 信号全高或全低	可
□06	Н	PU,PV,PW 相位不对	PU, PV, PW 信号全高或全低	可
□07	Н	电机堵转	电机堵转	可
□10	Н	过流	伺服驱动器 IPM 模块电流过大。	可
□11	Н	过压	伺服驱动器主电路电压过高。	否
□12	Н	欠压	伺服驱动器主电路电压过低。	否
□13	Н	参数破坏	伺服驱动器内 EEROM 数据异常。	可
□14	Н	超速	伺服电机转速异常高	可
□15	Н	偏差计数器溢出	内部位置偏差计数器溢出	可
□16	Н	位置偏移过大	位置偏移脉冲超出用户参数 P□504 的设定	可
			值。	
□17	Н	电子齿轮错	电子齿轮设置不合理或脉冲频率太高	可
□18	Н	电流检测第1通道异常	电流检测异常	可
□19	Н	电流检测第2通道异常	电流检测异常	可
□22	Н	电机型号错	伺服驱动器参数与电机不匹配	可
□23	Н	伺服驱动器与电机不匹配	伺服驱动器与电机不匹配	可
□25	Н	总线式编码器多圈信息出错	多圈信息出错	可
□26	Н	总线式编码器多圈信息溢出	多圈信息溢出	可
□27	Н	总线式编码器电池警报 1	电池电压低于 2.5v, 多圈位置信息已丢	可
□28	Н	总线式编码器电池警报 2	电池电压低于 3.1v, 电池电压偏低	可
□30	Н	泄放电阻断线报警	泄放电阻损坏。	可
□31	Н	再生过载	再生处理回路异常。	否
□33	Н	瞬间停电报警	在交流电中,有超过一个电源周期的停电发生。	可
□34	Н	旋转变压器异常	旋转变压器通信异常。	可
□40	Н	总线式编码器通讯异常	伺服驱动器与编码器无法进行通讯。	可
□41	Н	总线式编码器过速	电源 ON 时,编码器高速旋转	可
□42	Н	总线式编码器绝对状态出错	编码器损坏或编码器解码电路损坏	可
□43	Н	总线式编码器计数出错	编码器损坏或编码器解码电路损坏	可
□44	Н	总线式编码器控制域中校验 错	编码器信号受干扰或编码器解码电路损坏	可
□45	Н	总线式编码器通讯数据校验 错误	编码器信号受干扰或编码器解码电路损坏	可
□46	Н	总线式编码器状态域中截止	编码器信号受干扰或编码器解码电路损坏	可

报警显示	ALM 输出	报警名称	报警内容	可否清除
		位错误		
□47	Н	总线式编码器 SFOME 截止	编码器信号受干扰或编码器解码电路损坏	可
		位错误		
□48	Н	总线式编码器数据未初始化	总线式编码器 EEPROM 数据为空	可
□49	Н	总线式编码器数据和数校验	总线式编码器 EEPROM 数据和数校验异常	可
		错		
□63	Н	MII 通讯超时掉线	没有 MII 数据	可
□64	Н	MII 通讯同步出错	上下位机 Watch Dog 计数器数值不一致	可
□70	Н	驱动器过热报警	驱动器内部 IPM 模块温度过高	可
□ <b></b>	L	无错误显示	显示正常动作状态	可

#### 注:

- 1、报警显示中的"□"可能是"A"或"b",分别是A或b轴报警。
- 2、□25、□26、□27、□41 需通过辅助功能模式对编码器内部报警清除,才可对报警复位。

### B.2 报警显示与报警显示的原因与处理措施

如果伺服驱动器发生不良状况,则面板操作器会出现警报显示A□□或b□□。报警显示及其处理措施如下所示。 如果处理后仍不能解决不良状况,请与本公司的服务部门联系。

#### 警报显示清单

报警	报警内容	报警发生状	原因	处理措施
		况		
		, -	编码器配线错	修正编码器配线
			编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线, 芯线为 0.12mm2以上,镀锡软 铜多股绞合线
			编码器电缆过长,受到干扰	配线距离最长为 20m
	増量编码器 ABC	在接通电源时	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设
□01	断线	或者运行过程 中发生	编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策
			编码器故障	更换伺服电机
			伺服驱动器电路板故障	更换伺服驱动器
			编码器配线错	修正编码器配线
			编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线
			编码器电缆过长,受到干扰	配线距离最长为 20m
	増量編码器	在接通电源时	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设
□02	UVW 断线	或者运行过程 中发生	编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG侧FG分流
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策
			编码器故障	更换伺服电机
	·		- 50 -	

报警	报警内容	报警发生状 况	原因	处理措施
		-	伺服驱动器电路板故障	更换伺服驱动器
		在接通控制电 时发生	伺服驱动器电路板故障	更换伺服驱动器
		在伺服 ON 时	电机配线异常(配线不良、连接不 良)	修正电机配线
		发生	编码器配线异常(配线不良、连接不良)	修正编码器配线
			伺服驱动器电路板故障	更换伺服驱动器
			电机配线异常(配线不良、连接不良)	修正电机配线
□03	过载	在输入指令时 伺服电机不旋	编码器配线异常(配线不良、连接不良)	修正编码器配线
		转的情况下发 生	起动扭矩超过最大扭矩	重新研讨负载条件、运 行条件或者重新研讨 电机容量
			伺服驱动器电路板故障	更换伺服驱动器
		     在通常运行时	有效扭矩超过额定扭矩或起动扭矩 大幅度超过额定扭矩	重新研讨负载条件、运 行条件或者重新研讨 电机容量
		发生	伺服驱动器存放盘内的温度高	将盘内温度下调到 55°以下
			伺服驱动器电路板故障	更换伺服驱动器
	増量編码器	在接通控制电	编码器配线错	修正编码器配线
□05	UVW 信号异常	源时发生	编码器故障	更换伺服电机
			伺服驱动器电路板故障	更换伺服驱动器 确认动力线相序是否
	电机堵转		电机动力线 UVW 相序不正确	正确,确认电机型号码是否设置正确
□07			电机零点不正确	对电机进行校零操作
		在通常运行时	电机实际已经堵转	请检查机械
		发生	电机没有堵转,属于误报 因电源断开而数次进行过载警报复	请将 P□603 改大
		在接通控制电 源时发生	位运行	变更警报的复位方法
			伺服驱动器电路板故障	更换伺服驱动器
			U, V, W 与地线连接错误 地线缠在其他端子上	检查配线,正确连接
			电机主电路用电缆的 U, V, W 与地线 之间短路	修正或更换电机主电
			电机主电路用电缆的 U, V, W之间短路	路用电缆
			再生电阻配线错误	检查配线,正确连接
			伺服驱动器的 U, V, W 与地线之间路	   更换伺服驱动器
			伺服驱动器故障(电流反馈电路、功率晶体管或者电路板故障)	史狭何旅驱幼裔 
□10	过流	在接通主电路	电机主电路用电缆的 U, V, W 与地线	
		电源时发生或 者在电机运行	之间短路	   更换伺服电机
		过程中产生过	电机主电路用电缆的 U, V, W 之间短路	文 沃 門
		200	因电源断开而数次进行过载警报复 位运行	变更警报的复位方法
			位置速度指令发生剧烈变化	重新评估指令值
			负载是否过大,是否超出再生处理能 力等	重新研讨负载条件、运行条件
			伺服驱动器的安装方法(方向、与其	将伺服驱动器的环境
			他部分的间隔)不适合(是否有存放盘放热、周围加热的影响)	温度下降到 55 ℃以 下
			编码器打滑	更换伺服电机
			伺服单元的风扇停止转动	更换伺服驱动器

报警	报警内容	报警内容    报警发生状       原因		<u>处理措施</u>	
			伺服驱动器电路板故障		
		在接通控制电 源时发生		更换伺服驱动器	
		在接通主电路 电源	AC 电源电压过大	将 AC 电源电压调节 到正常范围	
		时发生	伺服驱动器电路板故障	更换伺服驱动器	
	过压		检查 AC 电源电压(是否有过大的电压变化)	将 AC 电源电压调节 到正常范围	
□11	*在接通主电路电源时检测	在通常运行时 发生	使用转数高,负载转动惯量过大(再生能力不足)	重新研讨负载条件、运 行条件(检查负载转 动惯量、负性负载的规 格)	
			伺服驱动器电路板故障	更换伺服驱动器	
		在伺服电机减 速时 发生	使用转数高,负载转动惯量过大	重新研讨负载条件、运 行条件	
		在接通控制电 源时发生	伺服驱动器电路板故障	更换伺服驱动器	
			AC 电源电压过低	将 AC 电源电压调节 到正常范围	
		在接通主电路	伺服单元的保险丝熔断	更换伺服驱动器	
	欠压 *在接通主电路 电源时检测	电源   时发生	冲击电流限制电阻断线(电源电压 是否异常,冲击电流限制电阻是否过 载)	更换伺服单元(确认电源电压,减少主电路 ON/OFF 的频度)	
$\Box$ 12			伺服驱动器电路板故障	更换伺服驱动器	
			AC 电源电压低(是否有过大的压降)	将 AC 电源电压调节 到正常范围	
		在通常运行时 发生	发生瞬间停电	通过警报复位重新开 始运行	
			电机主电路用电缆短路	修正或更换电机主电 路用电缆	
			伺服电机短路	更换伺服电机	
			伺服驱动器电路板故障	更换伺服驱动器	
	do Net esta less	   在接通控制电	正在设定参数时电源断开	执行用户参数初始化	
$\Box 13$	参数破坏	源时发生	正在写入警报时电源断开	处理(F□011)	
		在接通控制电	伺服驱动器电路板故障 伺服驱动器电路板故障	更换伺服驱动器 更换伺服驱动器	
		源时发生	电机配线的 U, V, W 相序错	校正电机配线	
			编码器配线错	修正编码器配线	
		在伺服 ON 时 发生	编码器配线因受干扰而产生误动作	实施编码器配线抗干	
_	+7.7+			更换伺服驱动器	
□14	超速		电机配线的 U, V, W 相序错	校正电机配线	
		在伺服电机开	编码器配线错	修正编码器配线	
		始运 行时或者高速	编码器配线因受干扰而产生误动作	实施编码器配线抗干 扰对策	
		旋转	位置/ 速度指令等的输入过大	下调指令值	
		时发生	指令输入增益设定错误	校正指令输入增益	
		去与职力和开	伺服驱动器电路板故障	更换伺服驱动器	
		在伺服电机开 始运行时或者	电机堵转   输入指令频率异常	检查负载 上位机降低频率	
□15	位置计数器溢出	高速旋转时发	接线错误	修正配线	
□16	位置偏移过大 (在伺服ON 状	在接通控制电	   位置偏移过大警报电平(P□504) 不   正确	将用户参数 P□ 504 的值设定为 0 以外的	
□ 10	态   工位器位移初寸	源时发生		值 更数/2007年中間	
	下位置偏移超过		伺服驱动器电路板故障	更换伺服驱动器	

报警	报警内容	报警发生状 况	原因	处理措施
	用户参数溢出电 平 P□504 设定)	在高速旋转时	伺服电机的 U, V, W 的配线不正常 (不完全连接)	修正电机配线
	〒P口504 反走 <i> </i>	发生	( 小元宝连接)	修正编码器配线 更换伺服驱动器
		   在发出位置指	同服驱动器电路板故障 同服电机的 U,V,W 的配线不良	修正电机配线
		令时电机不旋 转的情况下发 生	伺服驱动器电路板故障	更换伺服驱动器
			伺服驱动器的增益调整不良	上调速度环增益(P□ 100)、位置环增益(P□102)
		动作正常,但 在长指令时发 生	位置指令脉冲的频率过高	缓慢降低位置指令频率 加入平滑功能 重新评估电子齿数比
		±.	位置偏移过大警报电平(P□504)不正确 负载条件(扭矩、转动惯量)与电机	車制庁佰电丁囚奴比 将用户参数 P□ 504 设定为正确值 研讨重新评估负载或
			规格不符	者电机容量
□17	电子齿轮错	在接通控制电源时发生 在伺服电机开始运行时发生	电子齿轮设置不正确	重新设置 P□202、P□ 203
□18	电流检测第1通 道异常	在接通控制电源时发生 在伺服电机开始运行时发生	一伺服驱动器电路板故障	更换伺服驱动器
□19	电流检测第1通 道异常	在接通控制电源时发生 在伺服电机开始运行时发生	一伺服驱动器电路板故障	更换伺服驱动器
		74.011.17.01	驱动器电机参数设置异常	更换伺服驱动器
□22	电机型号错	在接通控制电 源时发生	写入到编码器的参数异常	更换伺服电机(编码 器)
			伺服驱动器电路板故障	更换伺服驱动器
			伺服单元容量与电机容量不适合电 机容量	使伺服单元与伺服电 机的容量相互适合
□23		在接通控制电 源时发生	写入到编码器的参数异常	更换伺服电机(编码器)
			驱动器电机参数设置异常	更换伺服驱动器
□25	总线编码器多圈 数据出错	在接通控制电源时发生 在伺服电机运行时发生	伺服驱动器电路板故障 ・绝对值编码器多圈数据异常	更换伺服驱动器 执行清除总线编码器 多圈位置(F□09)和清 除总线编码器报警寄 存器(F□010)
□26	总线编码器多圈 数据溢出	在接通控制电源时发生 在伺服电机运行时发生	绝对值编码器多圈数据异常	执行清除总线编码器 多圈位置(F□09)和清 除总线编码器报警寄 存器 (F□010)
□27	总线编码器电池 报警 1	在接通控制电 源时发生		
□28	总线编码器电池 报警 2	在接通控制电 源时发生		
		在接通控制电 源时发生	伺服驱动器电路板故障	更换伺服驱动器
□30	再生异常	在接通主电路 电源时发生	未外接再生电阻 检查再生电阻是否配线不良、脱落或 者断线 B2-B3 之间的跨接线脱落(使用内	连接再生电阻 修正外接再生电阻的 配线
			置再生电阻时)	正确配线

报警	报警内容	报警发生状	原因	处理措施
		况	   检查再生电阻是否配线不良、是否脱   落	   修正外接再生电阻的   配线
		在通常运行时 发生	再生电阻断线(再生能量是否过大)	更换再生电阻或者更 换伺服驱动器(重新 研讨负载、运行条件)
			伺服驱动器故障(再生晶体管、电压 检测部分故障)	更换伺服驱动器
		在接通控制电 源时发生	伺服驱动器电路板故障	更换伺服驱动器
		在接通主电路 电源时发生	电源电压超过 270V	校正电压
		在通常运行时	再生能量过大	   重新选择再生电阻容
□31	再生过载	发生(再生电阻温度上升幅度大)	处于连续再生状态	量或者重新研讨负载条件、运行条件
		在通常运行时 发生(再生电 阻温度上升幅 度小)	伺服驱动器电路板故障	更换伺服驱动器
		在伺服电机减 速时发生	再生能量过大	重新选择再生电阻容 量或者重新研讨负载 条件、运行条件
	电源缺相	在接通控制电 源时发生	伺服驱动器电路板故障	更换伺服驱动器
	(在主电源ON 状态下,L1、L2、 L3 相中,某一相 持续1秒以上的 低电压状态) *在接通主电路 电源时检测	在接通主电源时发生	三相电线配线不良	修正电源配线
			三相电源不平衡	修正电源的不平衡 (调换相位)
□32			伺服驱动器电路板故障	更换伺服驱动器
		在伺服电机驱 动时发生	三相电线配线不良	修正电源配线
			三相电源不平衡	修正电源的不平衡 (调换相位)
	2040 4 122 04	37H 7人工	   伺服驱动器电路板故障	更换伺服驱动器
□33	瞬间停电报警	在通常运行时 发生	在交流电中,有超过一个电源周期的 停电发生	检查供电电路
		在接通控制电	编码器配线错	修正编码器配线
		在按過程制电   源时发生	编码器故障	更换伺服电机
		W-1/2-	伺服驱动器电路板故障	更换伺服驱动器
			编码器配线错编码器电缆规格不同,受到干扰	修正编码器配线 将电缆规格改为多股 绞合线或者多股绞合 屏 蔽 线 , 芯 线 为 0.12mm²以上,镀锡软 铜多股绞合线
_	쓰셨습니 마 ㅁ 꽈.		编码器电缆过长,受到干扰	配线距离最长为 20m
□40	总线编码器异常	在运行过程中 发生	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设
			编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策
			编码器故障	更换伺服电机
			伺服驱动器电路板故障	更换伺服驱动器
□41	总线编码器过速	在接通控制电源时发生	PG 电源接通时伺服电机以 100r/min 以上的速度旋转	伺服电机转数为 100 r/min 以下时 PG 电源 置为 ON

报警	报警内容	报警发生状 况	原因	处理措施			
			编码器故障	更换伺服电机			
			伺服驱动器电路板故障	更换伺服驱动器			
		在运行过程中	编码器故障	更换伺服电机			
		发	伺服驱动器电路板故障	更换伺服驱动器			
	总线编码器 FS	通常运行时发	编码器故障	更换伺服电机			
□42	状态错	生	伺服驱动器电路板故障	更换伺服驱动器			
□43	总线编码器计数 出错	在通常运行时 发生	伺服驱动器电路板故障	更换伺服驱动器			
			编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线,芯线为.12mm ² 以上,镀锡软铜多股绞 合线			
		<b>→ 1</b> → 1 <b>▽</b> 1 <b>&gt;</b> 11.1 1.1	编码器电缆过长,受到干扰	配线距离最长为 20m			
□44	总线编码器控制 域中校验错	在接通控制电源时或者运行	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设			
		过程中发生	编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上			
			有相起过 位置上 FG 的电位因电机侧设备(焊机等) 连接设备地线以免的影响而产生变动 PG 侧 FG 分流 实施编码器配线抗				
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策			
			编码器配线错	修正编码器配线			
			将电缆规格已 绞合线或者多 编码器电缆规格不同,受到干扰 屏蔽线,芯线				
			将电缆规格改为多股				
	总线编码器通讯	在接通控制电 源时或者运行	编码器电缆产生啮入、包皮损坏,信 号线受到干扰 修正编码器电缆				
□45	数据校验错误	过程中发生	编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上			
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流			
			的影响而产生变动 PG 侧 FG 分流 编码器的信号线受到干扰 实施编码器配线 扰对策				
			编码器故障	更换伺服电机			
			伺服驱动器电路板故障	更换伺服驱动器			
			编码器配线错	修正编码器配线			
		在接通控制电	编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线,芯线为.12mm ² 以上,镀锡软铜多股绞 合线			
□46	线编码器状态域中载止位错误	源时或者运行	编码器电缆过长,受到干扰	配线距离最长为 20m			
	中截止位错误	过程中发生	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设			
			编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上			
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流			

报警	报警内容	子父流何服使徒用 报警发生状 70	原因	处理措施
		况	编码器的信号线受到干扰	   实施编码器配线抗干   扰对策
			   编码器故障	更换伺服电机
			伺服驱动器电路板故障	更换伺服驱动器
			编码器配线错	修正编码器配线
			编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线,芯线为.12mm ² 以上,镀锡软铜多股绞 合线
			编码器电缆过长,受到干扰	配线距离最长为 20m
□47	在接通控制电源 时或者运行过程	在接通控制电源时或者运行	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设
□ + /	中发生	过程中发生	编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上
			FG 的电位因电机侧设备(焊机等)的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策
			编码器故障	更换伺服电机
		<b>左按</b> 语被制由	伺服驱动器电路板故障	更换伺服驱动器
□48	总线编码器数据 未初始化	在接通控制电 源时或者运行 过程中发生	编码器 EEROM 未初始化	更换伺服电机
			编码器配线错	修正编码器配线
			编码器电缆规格不同,受到干扰	将电缆规格改为多股 绞合线或者多股绞合 屏蔽线,芯线为.12mm° 以上,镀锡软铜多股绞 合线
			编码器电缆过长,受到干扰	配线距离最长为 20m
	总线编码器数据 和数校验错	在接通控制电源时或者运行过程中发生	编码器电缆产生啮入、包皮损坏,信 号线受到干扰	修正编码器电缆铺设
□49			编码器电缆与大电流线捆在一起或 者相距过	将编码器电缆铺设在 不会施加浪涌电压的 位置上
			FG 的电位因电机侧设备(焊机等) 的影响而产生变动	连接设备地线以免向 PG 侧 FG 分流
			编码器的信号线受到干扰	实施编码器配线抗干 扰对策
			编码器故障	更换伺服电机
			伺服驱动器电路板故障	更换伺服驱动器
		在接通控制电	伺服驱动器电路板故障	更换伺服驱动器
		源时发生	因电源断开而数次进行过载警报复 位运行	变更警报的复位方法
□70	过热	在主电源ON时	负载超过额定负载	重新研讨负载条件、运 行条件或者重新研讨 电机容量
	或者电机运 时发生散热 过热		伺服驱动器的环境温度超过 55 ℃	将伺服驱动器的环境 温度下调到 55 ℃以 下
			伺服驱动器电路板故障	更换伺服驱动器

# 附录 C 脉冲式伺服驱动器电机型号代码表

## 1. 米格电机设定:

PA006 参数和 PA005 参数设置: (非常重要!)

PA000			适配驱动器			
米格电机	PA005	PA006	LS30PSII LS30PDII	LS30PS LS30PD	LS50PS LS50PD	LS75PS
60ST-M00630	H0000		√	√	√	√
60ST-M01330	H0001		√	√	√	√
60ST-M01930	H0002		√	√	√	√
80ST-M02430	H0004		√	√	√	√
80ST-M03520	H0005		√	√	√	√
80ST-M04025	H0006		√	√	√	√
90ST-M02430	H0007		√	√	√	√
90ST-M03520	H0008		√	√	√	√
90ST-M04025	H0009	H0020	√	√	√	√
110ST-M02030	H0010	H0020	√	√	√	√
110ST-M04020	H0011		√	√	√	√
110ST-M04030	H0012		√	√	√	√
110ST-M05030	H0013		√	√	√	√
110ST-M06020	H0014		√	√	√	√
110ST-M06030	H0015		√	√	√	√
130ST-M04025	H0016		√	√	√	√
130ST-M05025	H0017		√	√	√	√
130ST-M06025	H0018		√	√	√	√
130ST-M07725	H0019			√	√	√
130ST-M10010	H0020			√	√	√
130ST-M10015	H0021		√	√	√	√
130ST-M10025	H0022			√	√	√
130ST-M15015	H0023			√	√	√
130ST-M15025	H0024				√	√
150ST-M15020	H0026				√	√
150ST-M18020	H0027				√	√
150ST-M23020	H0028					√
150ST-M27020	H0029					√
180ST-M17215	H0030				√	√
180ST-M19015	H0031				√	√
180ST-M21520	H0032				√	√
180ST-M27015	H0034				√	√
180ST-M35010	H0035				√	√
180ST-M35015	H0036					√

## 2. 华大电机型号设定:

### PA006 参数和 PA005 参数设置: (非常重要!)

			适配驱动器			
华大电机型号	PA005	PA006	LS30PSII LS30PDII	LS30PS LS30PD	LS50PS	LS75PS
80ST-01330LF1B	H0000		√	√	√	√
80ST-02430LF1B	H0001		√	√	√	√
80ST-03330LF1B	H0002	]	√	√	√	√
110ST-M02030LFB	H0003		√	√	√	√
110ST-M04030LFB	H0004		√	√	√	√
110ST-M05030LFB	H0005		√	√	√	√
110ST-M06020LFB	H0006		√	√	√	√
110ST-M06030LFB	H0007			√	√	√
130ST-M04025LFB	H0008		√	√	√	√
130ST-M05025LFB	H0010		√	√	√	√
130ST-M06025LFB	H0011	H0000	√	√	√	√
130ST-M07720LFB	H0012			√	√	√
130ST-M07725LFB	H0013			√	√	√
130ST-M07730LFB	H0014			√	√	√
130ST-M10015LFB	H0015			√	√	√
130ST-M10025LFB	H0016			√	√	√
130ST-M15015LFB	H0017			√	√	√
130ST-M15025LFB	H0018				√	√
150ST-M15025LFB	H0019				√	√
150ST-M18020LFB	H0020				√	√
150ST-M23020LFB	H0021					√
150ST-M27020LFB	H0022					√

### 3. 达风 AST 5 对极电机参数设定: PA006 参数和 PA005 参数设置:(非常重要!)

			适配驱动器			
米格电机	PA005	PA006	LS30PSII LS30PDII	LS30PS LS30PD	LS50PS	LS75PS
60AST-M00630	H0000		√	√	√	√
60AST-M01330	H0001		√	√	√	√
80AST-M01330	H0002	1	√	√	√	√
80AST-M02430	H0003	1	√	√	√	√
80AST-M03230	H0004	]	√	√	√	√
110AST-M04220	H0005	1	√	√	√	√
110AST-M05420	H0006	1	√	√	√	√
110AST-M06420	H0007	1		√	√	√
110AST-M07520	H0008	110040		√	√	<b>√</b>
110AST-M04230	H0009	H0040		√	√	√
110AST-M05430	H0010			√	√	<b>√</b>
110AST-M06425	H0011	1		√	√	<b>√</b>
130AST-M05415	H0012			√	~	<b>√</b>
130AST-M06415	H0013	1		√	√	√
130AST-M07515	H0014			√	√	<b>√</b>
130AST-M08415	H0015	1			√	√
130AST-M09615	H0016				√	<b>√</b>
130AST-M11515	H0017	1			√	<b>√</b>
130AST-M14615	H0018					√
130AST-M05430	H0019	1			√	√
130AST-M06430	H0020	1			√	<b>√</b>
130AST-M07530	H0021	1			√	<b>√</b>
130AST-M08430	H0022	1			√	√
130AST-M09625	H0023	1				<b>√</b>
130AST-M11520	H0024	1				√
130AST-M14620	H0025	1				√
180AST-M17215	H0026	1				√
180AST-M27015	H0027	1				√
180AST-M48015	H0028	1				√

## 严谨地做好产品的每个细节

# 积极敏锐地跟踪先进技术

# 热诚有效地服务于每个客户

## 南京达风数控技术有限公司

公司地址:南京市江宁区科学园福英路 1001 号 49-50 栋

公司网址: WWW. WINDCNC. COM

销售服务: 025-52793382, 025-58321930

15380758766, 18936015441, 15051862098

技术服务: 15150571245, 15298396577

版本: V2.00