MII 总线伺服主轴和总线 IO 板的 调试应用说明

目录

2000Ts 系列	1
1. 基本说明	1
2. MII 总线主轴伺服驱动的参数设定	1
3. MII 总线 IO 板的设定	2
4. 2000Ts 参数的设定	3
5. 操作编程应用说明	3
21TD 系列	4
1. 基本说明	4
2. MII 总线主轴伺服驱动的调试步骤	4
2.1 电机参数自学习	5
2.2 21TD 系列系统参数的设定	6
2.3 21TD 系列系统主轴伺服动作调试	6
3. MⅡ 总线 IO 板的设定	8
3.1 IO 板上的两个旋钮开关	8
3.2 输出口的地址	8
3.3 输入口的地址	8
3.4 输入口的 COM 端	8
注意:	8
4. 21TD 系列系统参数的设定	9
5. 操作编程应用说明	

2000Ts 系列

MII 总线伺服主轴和总线 IO 板的调试

1. 基本说明

2000Ts 系列 软件版本 V11 以上的支持 MII 总线伺服主轴和总线 IO 板: 接线:

2. MII 总线主轴伺服驱动的参数设定

F7-05: 设定站地址(MII通讯地址),根据主轴在系统中的轴定义,按照以下表格设定:

- 轴定义
 地址

 X 轴
 1

 Z 轴
 2

 Y 轴
 3

 A 轴
 4

 B 轴
 5

 C 轴
 6
- F7-06: 设为1;

F7-07: MII 通讯字节长度;因系统出厂默认为 17Byte,因此该参数也设为 0;

- =0: 17Byte
- =1: 32Byte

3. MII 总线 IO 板的设定

3.1 IO 板上的两个旋钮开关

两个旋钮开关分别用来设定通讯协议类型和站地址,其中: **协议开关:**应设为和数控系统通讯字节长度一致; **站号开关:**根据机床设备上共安装几块 IO 板而对应设定;比如共1块,可设为1;共2 块,那么第1块设为1,第2块设为2;

3.2 输出口的地址

- 每块 IO 板有 24 路输出,标号地址从 Y6.0~Y8.7;
- 每块 IO 板上的输出口在系统中对应的口地址是如此计算的:
- 站号为 p 上的输出口 Ym.n,地址为 (m*8+n)+ (p-1)*24 + 1; 比如:

站号为1的IO板上的y6.0在系统中的口地址为(6x8+0)+(1-1)x24+1,即49; 站号为1的IO板上的y8.7在系统中的口地址为(8x8+7)+(1-1)x24+1,即72; 站号为2的IO板上的y6.0在系统中的口地址为(6x8+0)+(2-1)x24+1,即73; 站号为2的IO板上的y8.7在系统中的口地址为(8x8+7)+(1-1)x24+1,即97;

3.3 输入口的地址

- 每块 IO 板有 32 路输出,标号地址从 X8.0~X11.7;
- 每块 IO 板上的输出口在系统中对应的口地址是如此计算的: 站号为 p 上的输出口 Xm.n, 地址为 (m*8+n)+ (p-1)*32 + 1;

比如:

站号为1的IO板上的X8.0在系统中的口地址为(8x8+0)+(1-1)x32+1,即65; 站号为1的IO板上的X10.7在系统中的口地址为(10x8+7)+(1-1)x32+1,即88; 站号为2的IO板上的X9.0在系统中的口地址为(9x8+0)+(2-1)x32+1,即105; 站号为2的IO板上的X11.7在系统中的口地址为(11x8+7)+(1-1)x32+1,即128;

3.4 输入口的 COM 端

- 每块 IO 板的输入口插头中都有一个 COM,分别标识为 COM8~COM11;
- COM 端子接 0V, 对应的是 24V(PNP)输入型;
- COM 接 24V 对应, 0V(NPN)输入型;

注意:

- (1) IO 板上的输入口端子排共 4 组,分别标号 J3~J6;
- (2) 由于每组 8 路输入共用一个 COM,因此每组只能统一是 NPN 型或统一是 PNP 型, 不能混;
- (3) 不同组可以是不同类型的输入;

4. 2000Ts 参数的设定

007 号位参数 Bit6:SPDR 0/1: 总线主轴速度模式下正反转对调,若位置模式下的方向相反,则修改 007 号对应轴的电机旋转方向

285 号: MII 总线主轴站地址 1:X 2:Z 3:Y 4:A

设为 1~4, 表示伺服主轴为 MII 总线型, 否则为普通脉冲式伺服主轴;

300 号: MII 总线 IO 板总数

设为 0,则表示无总线 IO 板,为 1~3 表示有总线 IO 板;

301~357号:设定对应功能的输出口和输入口的口号

- 由于 IO 口板的各端口对应机床的具体功能,系统事先并不知道,需要用户根据接线对应功能来设定,因此,系统开放了各功能口的口号设定,该 301~357 参数口号由用户根据具体接的端子口号设定;端口号的计算方法见 3.2 节和 3.3 节的描述;
- 若某些输入和输出口用的是主板本身自带的输入输出口,口号地址和原先模式一致, 从诊断里看。

5. 操作编程应用说明

IO 口的控制 M01, M20, M21 指令也同原先模式;

21TD 系列

MII 总线伺服主轴和总线 IO 板的调试

1. 基本说明

21 系列 软件版本 10080 以上的支持 MII 总线伺服主轴和总线 IO 板;

2. MII 总线主轴伺服驱动的调试步骤

2.1 电机参数自学习

1. 自学习前需先将确定如下参数:

驱动功能码	名称	设定值
F0-05	运行命令通道选择	0
F4-09	第二编码器选择	0
F4-02	位置指令方式	0
F7-05	MII 通讯地址	4~6(一般为 4)
F7-06	MII 总线通讯速率	1
F7-07	MII 通讯字节长度	0

注意:确保上述的参数正确,再进行自学习操作,此外 USB 总线插头不要插上去

2. 确定驱动电机参数

电机额定功率	0.4~900.0KW
电机额定频率	0.01Hz \sim 1000.00HZ
电机额定电压	0~460V
电机额定电流	0.1~2000.0A
电机额定转速	0~36000RPM
电机极对数	0~50
编码器线数	100~20000
伯可思由序	0: A 超前 B
/ 编码 奋 相 户 1: B 超前 A	1: B 超前 A
	电机额定频率 电机额定电压 电机额定电流 电机额定转速 电机额定转速 电机极对数 编码器线数

3. 自学习模式设定

F0-04	电机调谐选择	1: 电机静态自学习	
F0-04	(仅当 F0-05 为 0 时有效)	5: 动态自学习	

一般 F0-04 设定成 1 或 5. 建议设成 5, 如果学习后跳 Er-08 (编码器故障), 一般为编码器相序错误, 可以通过修改 参数 F1-07 更改相序, 重启驱动 F0-04 会复位成 0, 需重新设定。

注意:F0-04 电机静态自学习外,其他几项自学习电机都会转动,请确保电机转动时不会造机械故障再进入自学习状态 自学习过程可能较长,请耐心等待,注意不要让人靠近在自学习状态下的主轴

4. 进入自学习模式

- (1) 设置好电机参数,在 F0-04 中选择好要学习的内容。
- (2) 再确认 F0-05=0 (键盘使能) 后,按 FUN 找出 LED 显示 F0 的界面。
- (3) 然后同时按键盘上的"^{[NHFR}"键和"△"键,键盘显示"STUDY"表示系统开始自学习。
- (4) 如果学习正常,自学习结束后,LED显示"GOOD"。然后按"^{FUN}"返回正常显示界面。
- (5) 将 F0-05 改回 1, 重启驱动, 完成自学习。

完成目学习后,确保驱动的一些参数如卜表所示,然后断日	电重启驱动!
----------------------------	--------

驱动功能码	名称	设定值
F0-05	控制方式	1: 端子控制
F4-02	位置指令方式	2: 总线通讯

2.2 21TD 系列系统参数的设定

系统参数号	名称	设定值
0014 号	各轴轴地址编号 1:X 2:Z 3:Y 4:A	4: 作为A轴
0001 号	各轴相关设置(第2位)	1:旋转轴有效
0020/0021 号	各轴指令电子齿轮比倍乘系数/ 各轴指令电子齿轮比分频系数	机床主轴1比1的话, 参数设定1/36即可
1011 号	主轴类型	3: 伺服主轴
1013 号 0002 号	主轴位置时的轴号 伺服电机控制相关设置(第3位)	根据界面轴的排序来 设定,如:A轴作为主 轴,A轴在位置界面排 序排第3个, 则1013号参数设为3 若位置模式(M18)下 的主轴正反转相反, 则修改主轴对应轴名
1020 분	工社会山口	▶ 的电机方向 ● ●
1030 5	上 7 御 日 日	0
1031 号	反转输出口	0
1070 号	位置模式输出口	0
1071 号	位置模式完成输入口	0
1080 号	准停输出口	0
1081 号	准停到位输入口	0
1016 号	主轴编码器线数	实际填入

2.3 21TD 系列系统主轴伺服动作调试

1. 速度模式调试

系统指令: M17 速度模式(上电默认) M03 S500 / M04 S500 M05

系统参数号	名称	设定值
		若速度模式的主轴正
1001 号	冬 十 劫 相 光 沿 署 (第 1 份)	反转相反,则修改 1001 号位参数的第一
	日王和相天以且(第1位)	
		位

驱动参数号	名称	设定值
F3-03	加速时间	1
F3-04	减速时间	1

2. 位置模式调试

系统指令:

M18 位置模式(分度模式)

MO3 S500 / MO4 S500 / MO5 也同样有效

GOO Axx

GO1 Axx Fxx

驱动参数号	名称	设定值
F3-00	速度环(ASR)比例增益	130
F4-00	位置伺服比例增益	25
F4-01	定位/进位比例增益	15

3. 准停调试

系统指令:

M19 主轴准停

驱动参数号	名称	设定值
EF 01	定向位置	0
F5-01	(主轴准停)	U
F5-02	定位搜索速度	300
F5-05	定位方向	1

准停点调试流程:

(1) 手动拨动主轴到想要的位置

(2) 查看驱动 D-08 的编码器位置值

(3) 将 D-08 里的值填入到 F5-01 中

(4) 退出到 F5-01 界面后,重启驱动

(5) 上位机调试准停动作,如数控系统的准停指令 M19

3. MII 总线 IO 板的设定

3.1 IO 板上的两个旋钮开关

两个旋钮开关分别用来设定通讯协议类型和站地址,其中: **协议开关:**应设为和数控系统通讯字节长度一致; **站号开关:**根据机床设备上共安装几块 IO 板而对应设定;比如共1块,可设为1;共2 块,那么第1块设为1,第2块设为2,以此类推。

3.2 输出口的地址

- 每块 IO 板有 24 路输出,标号地址从 Y6.0~Y8.7
- 每块 IO 板上的输出口在系统中对应的口地址,也是 Y6.0~Y8.7,端口号则是根据系 统自带的输出口的最后一位来确定的,具体在**系统诊断**的**输出定义**界面

3.3 输入口的地址

- 每块 IO 板有 32 路输出,标号地址从 X8.0~X11.7;
- 每块 IO 板上的输出口在系统中对应的口地址,也是 X8.0~X11.7,端口号则是根据系统自带的输出口的最后一位来确定的,具体在系统诊断的输入定义界面

3.4 输入口的 COM 端

- 每块 IO 板的输入口插头中都有一个 COM,分别标识为 COM8~COM11;
- COM 端子接 0V, 对应的是 24V(PNP)输入型;
- COM 接 24V, 对应 0V(NPN)输入型;

注意:

- (1) IO 板上的输入口端子排共 4 组,分别标号 J3~J6;
- (2) 由于每组 8 路输入共用一个 COM,因此每组只能统一是 NPN 型或统一是 PNP 型, 不能混;
- (3) 不同组可以是不同类型的输入;

4. 21TD 系列系统参数的设定

2721 号: MII 总线 IO 站号

设为 0,则表示无总线 IO 板,为 1~2 表示有总线 IO 板; 2722 号:设定对应总线 IO 板的输入口起始地址,如:X8.0 开头,则填入 8 2722 号:设定对应总线 IO 板的输出口起始地址,如:Y6.0 开头,则填入 6

5. 操作编程应用说明

● IO 口的控制 M01, M20, M21 等指令也同原先模式;